
 

MICROCOMPUTERS

MICROCOMPUTERS
MICROCOMPUTERS

MICROCOMPUTERS
LWC31

HARDWARE & PROGRAMMING 
MANUAL



TURNER SEMICONDUCTOR

LWC31 Hardware & Programming Manual

Revision 4

02/ 02 / 2025



LWC31 Features

• Sixteen bit parallel processing
• 16 instructions
• 16 ALU Operations
• 13 General purpose registers
• 5 addressing modes
• True indexing capabilities
• Programmable stack pointer
• Variable length stack

• Interrupt capability
• Use with any type or speed 

memory
• 16 bit bi-directional Data Bus
• Addressable memory range of up 

to 65K words
• Turbo mode
• Bus active output

Pinout

There are 40 pins, the pins are as following (In order from left to 

right, looking at the interface): A0–A15 (Address bus), Write, Read, D0–D15 

(Data bus), Turbo, Reset, Clock, Bus active, Set carry, Interrupt request.

Address bus (A0-A15):

16 bit address to allow up to 65K of addressable memory at one time.

Write:

While this pin is high, the LWC31 is outputting data ready to be 

written to the data bus.

Read:

While this pin is high, the LWC31 is reading data from the specified 

address.

Data bus (D0-D15):

16 bit bi-directional data bus, transferring data to and from 

peripherals.

Turbo:

While this pin is held high, instructions which do not use the data 

bus during the execution cycle will complete the execution phase on the next 

fetch, saving one clock cycle. On average this is a 50 percent speed 

increase.



Reset:

This input is used to initialize the CPU from a halt state, while this 

pin is held high, the CPU will not execute any instructions, the data bus is 

set to LOW, the address bus is set to 0xFFFF, and the read pin is set to 

HIGH. The clock cycle after the reset pin is LOW will set the program 

counter (PC) to the value on the data bus, the address bus still at 0xFFFF. 

The reset cycle will disable interrupts, but the registers and stack pointer 

are not reset.

Clock:

Clock input to the CPU

Set carry:

Rising edge on this pin will set the carry bit in the status register.

Interrupt:

While this pin is HIGH, interrupt disable bit is cleared, and the CPU 

is in the fetch phase, 0x0000 (BRK) is force loaded into the instruction 

register.

Addressing modes

Immediate addressing:

This addressing mode is available to all instructions, the operand is 

contained in the second word of the instruction and no further memory 

addressing is required.

Absolute addressing:

Absolute addressing is only available to LOD (Load) and STO (Store) 

instructions. In this addressing mode, data is read/written to memory.

Indexed addressing:



Index addressing is only available to LOD and STO instructions. This 

addressing mode is used in conjunction with registers to read/write to 

memory at an indexed location. The effective address is calculated by adding 

the base address to the contents in a register.

Register addressing:

This form of addressing is represented with a one word instruction, 

implying an operation with one or more registers.

Implied addressing:

In the implied addressing mode, the address containing the operand is 

implicitly stated in the operation code of the instruction.

Reset, fetch, execute, and interrupt cycles

Reset:

When the reset pin is pulled HIGH, the CPU will read from address 

0xFFFF as the start vector to begin execution. The next clock cycle after 

the reset pin is LOW the CPU will latch the start vector to the PC.

Fetch:

During the fetch cycle, the CPU outputs the current program counter to 

the address bus to read the next opcode. When the clock signal is pulled 

HIGH, the CPU latches the opcode into the instruction register, the PC is 

incremented, and the CPU starts to read the next value as immediate data. 

When the clock goes back to low, the CPU latches the immediate data, the PC 

is incremented if immediate data is used in the opcode (otherwise the 

latched data is discarded), and the CPU is put into the execute phase. If 

the turbo pin is HIGH and the instruction does not access memory, the CPU 

returns immediately back to the fetch phase, and the instruction is executed 

during this next fetch.



Execute:

During the execute phase, the instruction is executed.

Interrupt:

The interrupt is triggered on the next fetch cycle when: The interrupt 

disable bit is clear and the interrupt pin is pulled HIGH. When the 

interrupt is triggered, during the fetch cycle, the value 0x0000 (BRK) is 

force loaded into the instruction register, but the PC is not incremented. 

During an interrupt (or when executing a BRK instruction) an interrupt is 

not able to trigger again until the CPU leaves the interrupt state with a 

return from interrupt (RTI) instruction. If the interrupt is triggered by a 

BRK instruction, and not from the pin, the B bit is set in the status 

register.

Timings

Reset cycle:

Fetch cycle:



Execute cycle (Instruction that reads from memory):

Execute cycle (Instruction that writes to memory):

Full reset fetch and execute example (Instruction that writes to mem.):



PROGRAMMING

Instruction Set Architecture

Registers:

The LWC31 has 16 internal accessible registers. There are 13 general 

purpose registers and 3 special purpose registers.

Registers 1 to 11 are labeled r0-r10, r10 is also the result/remainder 

register (labeled rr) for DIV and MUL instructions, register 12 is the base 

pointer (bp), register 13 is the status mask (sm), register 14 is the stack 

pointer (sp), register 15 is a status register (st), and register 0 is a 

special immediate data, read-only register. Register 0 is latched with 

immediate data on the second phase of the fetch cycle, this register is used 

like any other register to provide a flexible, but simple instruction set.

Instruction encoding:

Instruction are encoded in 16 bit opcodes, the opcode contains the 

instruction, operand 1, operand 2, and operand 3.

IIIIXXXXYYYYZZZZ

Least significant bit is on the right.

I (4 bits): Instruction
X (4 bits): Operand 1 register selector
Y (4 bits): Operand 2 register selector
Z (4 bits): General instruction options / register selector

Each instruction may use one, two or all three operands as inputs. 

Operand 1 and 2 are selectors to select which registers to use as inputs to 

the instruction, instructions that generates a result will be stored back to 

the register selected with operand 1, except the memory write instructions 

where operand 1 is the register used to write to memory. Operand 3 is used 

differently depending on the instruction. Operand 3 may be used as the index 



register for store and load instructions, ALU function selector, conditional 

jump selector, or the operation selector for the interrupt option (INT) 

instruction.

Stack pointer:

The stack pointer register is a read and writable register that is 

automatically incremented/decremented when using the stack instructions 

(push, pop, jump to subroutine, return from subroutine, and return from 

interrupt). The SP register is a pre-decrement / post-increment model, 

meaning that when pushing to the stack, the stack pointer is decremented 

before writing to memory, and reads from memory before incrementing.

The stack register does not point to a memory address directly. It is 

used in combination with the base pointer register for the final offset. 

When writing to this register, or when a stack operation is performed, it is 

bitwise anded together with the status mask register. 

Base pointer:

The base pointer register is the stack base location, when using the 

stack pointer in load/store instructions as the address or index, or when 

using a stack operation (push, pop, jump to subroutine, return from 

subroutine, and return from interrupt), the base pointer is added to the 

stack pointer as the effective address.

Status mask:

The status mask register is used to limit the stack’s size, in powers 

of two. When writing to the stack pointer register, or when a stack 

operation is performed, the stack pointer is bitwise anded together with 

this register. This register must be set in a way to mask out upper bits in 

the stack pointer. For example, values like 0x000f, 0x001f 0xffff, are 

valid, where a value like 0x0505 is not.



Status register:

The status is a read and write register containing the flags that hold 

the CPU’s state, the flags are: Carry, Zero, Negative, Interrupt disable, 

Break, they correspond to bit 0, 1, 2, 3, and 4 respectively. A carry is 

generated when shifting a bit out with shift functions, or when a carry 

occurs from an arithmetic function. The zero flag is set when a value 

written to a register is NULL. The negative flag is set when a value written 

to a register has the most significant bit set. Writing to this register 

will not cause Z or N bit to change/written with unexpected values. Bitwise 

operations on the status register itself will not yield unexpected results 

on the Z/N bits, allowing successful setting/clearing of flags manually. The 

break flag is set if the interrupt was triggered from a break instruction.

Instructions

The LWC31 has only 16 instructions, but due to the instruction 

encoding, every one of these instructions are powerful.

0x0 – BRK

BReaK enters an interrupt routine. When this instruction is executed, 

the CPU pushes the current PC to the stack and sets the PC to the address 

set with the INT instruction. The B flag is set in the status.

No operands.

0x1 – JMP

JuMP sets the PC to the value in operand 1.

Operand 1: Address to jump to



0x2 – MOV

MOVe copies contents from one register to another.

Operand 1: Destination register

Operand 2: Source register

Modifies: ZN

0x3 – LOD

LoaD from memory at the specified address.

Operand 1: Destination register

Operand 2: Address

Operand 3: If not null, this will specify an index register. (Effective 

address = OP2+OP3)

Modifies: ZN

0x4 – STO

STOre to memory at the specified address.

Operand 1: Source register

Operand 2: Address

Operand 3: If not null, this will specify an index register. (Effective 

address = OP2+OP3)

0x5 – ALU

Perform an ALU operation on two registers and store the result back to 

the first operand. If the ALU function is bit shifting, operand 2 is 

ignored.

Operand 1: Data

Operand 2: Data

Operand 3: ALU function



Modifies: CZN (Does not modify the carry on bitwise operations and the 

negate operation)

ALU functions:

0x0 – ADD (Add)

0x1 – ADC (Add with carry)

0x2 – SUB (Subtraction)

0x3 – SBC (Subtract with carry)

0x4 – SHL (Shift left bits in operand 1 by one bit, MSB is shifted 

into the carry flag)

0X5 – ROL (Same as SHL, except the carry flag is shifted in to the 

LSB)

0x6 – SHR (Shift right bits in operand 1 by one bit, LSB is shifted 

into the carry flag)

0X7 – ROR (Same as SHR, except the carry flag is shifted in to the 

MSB)

0x8 – AND (Bitwise AND)

0x9 – OR (Bitwise OR)

0xA – XOR (Bitwise Exclusive OR)

0xB – MUL (Unsigned multiply)

Upper 16 bits of result stored in r12 (rr)

0xC – SMUL (Signed multiply)

Upper 16 bits of result stored in r12 (rr)

0xD – DIV (Unsigned divide)

Remainder stored in r12 (rr)

0xE – SDIV (Singed divide)

Remainder stored in r12 (rr)

0xF – NEG (Negate / Generate 2’s compliment)



0x6 – CMP

CoMPare two values. Perform a non-storing subtraction of OP1 and OP2 

and set the flags corresponding to the results.

Operand 1: Data

Operand 2: Data

Modifies: CZN

0x7 – JIF

Jump IF condition specified in operand 3 is true.

Operand 1: Address to jump to

Operand 3: Bitwise AND with the first three bits of the status register. If 

the result is non-zero, PC is set to operand 1. MSB of operand 3 will invert 

the condition.

0x8 – NOP

No Operation. Waste a clock cycle.

0x9 – INT

INTerrupt options. This instruction can be used to set and disable the 

interrupt disable bit, or it can be used to set the interrupt vector.

Operand 1: Interrupt vector. This is used if operand 3 is NULL.

Operand 3:

0x0: Set interrupt vector

0x1: Set interrupt disable

0x2: Clear interrupt disable

0xA – PLP

PuLl Processor status. This instruction pops a value off the stack and 

writes it into the status register.



0xB – PUSH

PUSH data onto the stack.

Operand 1: Data

0xC – POP

POP data off the stack and write it to a register.

Operand 1: Destination register

Modifies: ZN

0xD – JSR

Jump to SubRoutine. Push the current PC to the stack and set the PC to 

operand 1.

Operand 1: Address

0xE – RTS

ReTurn from Subroutine. Pop the return address from the stack and 

write it to the PC.

0xF – RTI

ReTurn from Interrupt. Pop the return address from the stack and write 

it to the PC, and exit from the interrupt state.


