MICROCOMPUTERS
NCROCONPUTERN

MCROCONPUTERS
NCROCONPUTERN

LWG31
HARDWARE & PROGRAMMING
MANUAL




TURNER SEMICONDUCTOR

LWC31Hardware & Programming Manual

Revision 4
02/02/2025




LWC31 Features

* Sixteen bit parallel processing * Interrupt capability
* 16 instructions * Use with any type or speed
* 16 ALU Operations memory
* 13 General purpose registers * 16 bit bi-directional Data Bus
* 5 addressing modes * Addressable memory range of up
* True indexing capabilities to 65K words
* Programmable stack pointer ¢ Turbo mode
* Variable length stack * Bus active output
Pinout

There are 40 pins, the pins are as following (In order from left to
right, looking at the interface): A0-A15 (Address bus), Write, Read, D0-D15

(Data bus), Turbo, Reset, Clock, Bus active, Set carry, Interrupt request.

Address bus (A0-Al5):

16 bit address to allow up to 65K of addressable memory at one time.
Write:

While this pin is high, the LWC31 is outputting data ready to be
written to the data bus.
Read:

While this pin is high, the LWC31 is reading data from the specified
address.
Data bus (D0-D15):

16 bit bi-directional data bus, transferring data to and from
peripherals.
Turbo:

While this pin is held high, instructions which do not use the data
bus during the execution cycle will complete the execution phase on the next
fetch, saving one clock cycle. On average this is a 50 percent speed

increase.




Reset:

This input is used to initialize the CPU from a halt state, while this
pin is held high, the CPU will not execute any instructions, the data bus is
set to LOW, the address bus is set to OxFFFF, and the read pin is set to
HIGH. The clock cycle after the reset pin is LOW will set the program
counter (PC) to the value on the data bus, the address bus still at OxFFFF.
The reset cycle will disable interrupts, but the registers and stack pointer
are not reset.

Clock:

Clock input to the CPU
Set carry:

Rising edge on this pin will set the carry bit in the status register.
Interrupt:

While this pin is HIGH, interrupt disable bit is cleared, and the CPU
is in the fetch phase, 0x0000 (BRK) is force loaded into the instruction

register.

Addressing modes

Immediate addressing:

This addressing mode is available to all instructions, the operand is
contained in the second word of the instruction and no further memory
addressing is required.

Absolute addressing:

Absolute addressing is only available to LOD (Load) and STO (Store)

instructions. In this addressing mode, data is read/written to memory.

Indexed addressing:




Index addressing is only available to LOD and STO instructions. This
addressing mode is used in conjunction with registers to read/write to
memory at an indexed location. The effective address is calculated by adding
the base address to the contents in a register.

Register addressing:

This form of addressing is represented with a one word instruction,

implying an operation with one or more registers.
Implied addressing:
In the implied addressing mode, the address containing the operand is

implicitly stated in the operation code of the instruction.

Reset, fetch, execute, and interrupt cycles

Reset:

When the reset pin is pulled HIGH, the CPU will read from address
OxFFFF as the start vector to begin execution. The next clock cycle after
the reset pin is LOW the CPU will latch the start vector to the PC.

Fetch:

During the fetch cycle, the CPU outputs the current program counter to
the address bus to read the next opcode. When the clock signal is pulled
HIGH, the CPU latches the opcode into the instruction register, the PC is
incremented, and the CPU starts to read the next value as immediate data.
When the clock goes back to low, the CPU latches the immediate data, the PC
is incremented if immediate data is used in the opcode (otherwise the
latched data is discarded), and the CPU is put into the execute phase. If
the turbo pin is HIGH and the instruction does not access memory, the CPU
returns immediately back to the fetch phase, and the instruction is executed

during this next fetch.




Execute:

During the execute phase, the instruction is executed.
Interrupt:

The interrupt is triggered on the next fetch cycle when: The interrupt
disable bit is clear and the interrupt pin is pulled HIGH. When the
interrupt is triggered, during the fetch cycle, the value 0x0000 (BRK) is
force loaded into the instruction register, but the PC is not incremented.
During an interrupt (or when executing a BRK instruction) an interrupt is
not able to trigger again until the CPU leaves the interrupt state with a
return from interrupt (RTI) instruction. If the interrupt is triggered by a
BRK instruction, and not from the pin, the B bit is set in the status

register.
Timings

Reset cycle:

Clock 7 I A
Reset / ﬂ ‘\

Address bus % ﬂ W
Data bus 7 /| ADDR )%
Read ﬂ ﬂ
Write % ﬂ(

Fetch cycle:

Addressbus FETCH ) FETCH )}~
Databus CMD )} DATA ¥

Read W
Write ,AV/




Execute cycle (Instruction that reads from memory) :

Reset
Address bus ADDR )7
Data bus DATA } %

Read

Write

Execute cycle (Instruction that writes to memory) :

Heset
Address bus ADDR } 7
Data bus DATA } 7

Read f
Write f "..

Full reset fetch and execute example (Instruction that writes to mem.):

Clock %) /I A S A U A U
Reset / ﬂ \
Address bus Z J \ FETCH ) FETCH ADDR &
Data bus A /| ADDR ¥ cMD ¥ ADDR DATA )&
Read 4 ﬂ \ fi
Wiite %) I /A U




Instruction Set Architecture

Registers:

The LWC31 has 16 internal accessible registers. There are 13 general
purpose registers and 3 special purpose registers.

Registers 1 to 11 are labeled r0-rl10, rl0 is also the result/remainder
register (labeled rr) for DIV and MUL instructions, register 12 is the base
pointer (bp), register 13 is the status mask (sm), register 14 is the stack
pointer (sp), register 15 is a status register (st), and register 0 is a
special immediate data, read-only register. Register 0 is latched with
immediate data on the second phase of the fetch cycle, this register is used

like any other register to provide a flexible, but simple instruction set.

Instruction encoding:
Instruction are encoded in 16 bit opcodes, the opcode contains the
instruction, operand 1, operand 2, and operand 3.

ITIIXXXXYYYYZZZZ

Least significant bit is on the right.

I (4 bits) Instruction

X (4 bits): Operand 1 register selector

Y (4 bits): Operand 2 register selector

Z (4 bits) General instruction options / register selector

Each instruction may use one, two or all three operands as inputs.
Operand 1 and 2 are selectors to select which registers to use as inputs to
the instruction, instructions that generates a result will be stored back to
the register selected with operand 1, except the memory write instructions
where operand 1 is the register used to write to memory. Operand 3 is used

differently depending on the instruction. Operand 3 may be used as the index




register for store and load instructions, ALU function selector, conditional
jump selector, or the operation selector for the interrupt option (INT)
instruction.

Stack pointer:

The stack pointer register is a read and writable register that is
automatically incremented/decremented when using the stack instructions
(push, pop, jump to subroutine, return from subroutine, and return from
interrupt). The SP register is a pre-decrement / post-increment model,
meaning that when pushing to the stack, the stack pointer is decremented
before writing to memory, and reads from memory before incrementing.

The stack register does not point to a memory address directly. It is
used in combination with the base pointer register for the final offset.
When writing to this register, or when a stack operation is performed, it is
bitwise anded together with the status mask register.

Base pointer:

The base pointer register is the stack base location, when using the
stack pointer in load/store instructions as the address or index, or when
using a stack operation (push, pop, jump to subroutine, return from
subroutine, and return from interrupt), the base pointer is added to the
stack pointer as the effective address.

Status mask:

The status mask register is used to limit the stack’s size, in powers
of two. When writing to the stack pointer register, or when a stack
operation is performed, the stack pointer is bitwise anded together with
this register. This register must be set in a way to mask out upper bits in
the stack pointer. For example, values like 0x000f, 0x001f Oxffff, are

valid, where a value like 0x0505 is not.




Status register:

The status is a read and write register containing the flags that hold
the CPU’s state, the flags are: Carry, Zero, Negative, Interrupt disable,
Break, they correspond to bit 0, 1, 2, 3, and 4 respectively. A carry is
generated when shifting a bit out with shift functions, or when a carry
occurs from an arithmetic function. The zero flag is set when a value
written to a register is NULL. The negative flag is set when a value written
to a register has the most significant bit set. Writing to this register
will not cause Z or N bit to change/written with unexpected values. Bitwise
operations on the status register itself will not yield unexpected results
on the Z/N bits, allowing successful setting/clearing of flags manually. The

break flag is set if the interrupt was triggered from a break instruction.

Instructions

The LWC31 has only 16 instructions, but due to the instruction

encoding, every one of these instructions are powerful.

0x0 - BRK

BReaK enters an interrupt routine. When this instruction is executed,
the CPU pushes the current PC to the stack and sets the PC to the address
set with the INT instruction. The B flag is set in the status.

No operands.

0x1 - JMP
JuMP sets the PC to the value in operand 1.

Operand 1: Address to jump to




0x2 - MOV

MOVe copies contents from one register to another.
Operand 1: Destination register
Operand 2: Source register

Modifies: ZN

0x3 - LOD
LoaD from memory at the specified address.
Operand 1: Destination register
Operand 2: Address
Operand 3: If not null, this will specify an index register. (Effective
address = OP2+0P3)

Modifies: ZN

0x4 - STO
STOre to memory at the specified address.
Operand 1: Source register
Operand 2: Address
Operand 3: If not null, this will specify an index register. (Effective

address = OP2+0P3)

0x5 - ALU

Perform an ALU operation on two registers and store the result back to
the first operand. If the ALU function is bit shifting, operand 2 is
ignored.
Operand 1: Data
Operand 2: Data

Operand 3: ALU function




Modifies: CZN (Does not modify the carry on bitwise operations and the
negate operation)
ALU functions:
0x0 - ADD (Add)
Ox1 - ADC (Add with carry)
0x2 — SUB (Subtraction)
0x3 - SBC (Subtract with carry)
Ox4 - SHL (Shift left bits in operand 1 by one bit, MSB is shifted
into the carry flag)
0X5 - ROL (Same as SHL, except the carry flag is shifted in to the
LSB)
Ox6 — SHR (Shift right bits in operand 1 by one bit, LSB is shifted
into the carry flag)
0X7 - ROR (Same as SHR, except the carry flag is shifted in to the
MSB)
0x8 — AND (Bitwise AND)
0x9 — OR (Bitwise OR)
OxA - XOR (Bitwise Exclusive OR)
0xB - MUL (Unsigned multiply)
Upper 16 bits of result stored in rl2 (rr)
0xC - SMUL (Signed multiply)
Upper 16 bits of result stored in rl2 (rr)
0xD - DIV (Unsigned divide)
Remainder stored in r12 (rr)
OxE - SDIV (Singed divide)
Remainder stored in r12 (rr)

0xF — NEG (Negate / Generate 2’'s compliment)




0x6 — CMP
CoMPare two values. Perform a non-storing subtraction of OP1 and OP2
and set the flags corresponding to the results.
Operand 1: Data
Operand 2: Data

Modifies: CZN

0x7 - JIF

Jump IF condition specified in operand 3 is true.
Operand 1: Address to jump to
Operand 3: Bitwise AND with the first three bits of the status register. If
the result is non-zero, PC is set to operand 1. MSB of operand 3 will invert
the condition.
0x8 - NOP

No Operation. Waste a clock cycle.

0x9 - INT

INTerrupt options. This instruction can be used to set and disable the
interrupt disable bit, or it can be used to set the interrupt vector.
Operand 1: Interrupt vector. This is used if operand 3 is NULL.
Operand 3:

0x0: Set interrupt vector

Ox1: Set interrupt disable

0x2: Clear interrupt disable

0xA - PLP
Pull Processor status. This instruction pops a value off the stack and

writes it into the status register.




O0xB - PUSH
PUSH data onto the stack.

Operand 1: Data

0xC - POP
POP data off the stack and write it to a register.
Operand 1: Destination register

Modifies: ZN

0xD - JSR
Jump to SubRoutine. Push the current PC to the stack and set the PC to
operand 1.

Operand 1: Address

OxE - RTS
ReTurn from Subroutine. Pop the return address from the stack and

write it to the PC.

OxF - RTI
ReTurn from Interrupt. Pop the return address from the stack and write

it to the PC, and exit from the interrupt state.




