MICROCOMPUTERS
NCROCONPUTERN

MCROCONPUTERS
NCROCONPUTERN

LWG33
HARDWARE & PROGRAMMING
MANUAL

TURNER SEMICONDUCTOR

LWC33 Hardware & Programming Manual

Revision 2
26/ 03 /2025

LWC33 Features

* Sixteen bit parallel processing i
* 16 instructions *
* 16 ALU Operations

* 12 General purpose registers i
* 7 addressing modes i

* True indexing capabilities
* Programmable stack pointer

* Variable length stack *
* 16 bit bi-directional device °

bus
Pinout

Viewing the CPU from the top:

Interrupt capability (4)

Use with any type or speed
memory

16 bit bi-directional Data Bus
Addressable memory range of up
to 1M words, 65K addressable at
once.

Sync output

Pause pin

ITITITITITITIITIIT WR OOO0000000000000 XXXX Q000

SSSS AAAAAAAAAAAAAAAA WR DDDDDDDDDDDDDDDD T YP C V

I: Device ID output (Left to right: I0-I15)

W (top): Device bus write

R (top): Device bus read

O: Device bus data I/O (D0-D15)
X: AUX flag Set (X0-X3)

Q: Interrupt request (Q1-0Q4)

S: Memory segment output (S0-S3)
A: Memory address output (AO-Al1l5)
W (bottom): Memory write

R (bottom): Memory read

D: Memory data I/O (D0-D15)

T: Reset

Y: Sync out

P: Pause

C: Clock

V: Set carry

Device ID (DO0-D15):

When reading or writing to a device, this is set to the requested
device ID.

Device write (W top):

When writing to a device, this pin is active on the second half of the
clock cycle.

Device read (R top):

When reading a device, this pin is active.
AUX flag set (X0-X3):

On the rising edge at any time, the AUX bit corresponding to the pin
will be set.

Interrupt request (Q1-Q4):

While the CPU is fetching an instruction, the CPU will force load BRK
when any of these pins are pulled HIGH, and the corresponding interrupt
INT1-INT4 is executed.

Memory segment output (S0-S3):

Selects a memory segment to read/write.
Memory address output (A0-AlS5):

16 bit address to allow up to 65K of addressable memory at one time.
Memory write (W bottom) :

Active on the second half of the clock cycle when writing to memory.
Memory read (R bottom):

Active while CPU is reading memory.

Memory data I/O (D0-D15):

16 bit bi-directional data bus, transferring data to and from memory.

Reset (T):

Reset is used to initialize the CPU, while this pin is held high, the
CPU will not execute any instructions, the data bus is cleared, segment is
cleared, and the address bus is set to OxFFFF, and the read pin is pulled
HIGH. On the falling edge of the next clock cycle after reset is LOW. The
data currently on the memory data bus is loaded into the program counter.
During a reset, interrupts are disabled, segment registers are cleared, V-
MEM is disabled, but register states are not changed.

Sync out (S):

This pin is pulled HIGH while the CPU is fetching an instruction.
Pause (P):

After the CPU completes an instruction, if this pin is HIGH, CPU
outputs (Segment, address, data, read, write) are cleared. The next clock
cycle after pause is set to LOW again will resume normal execution.

Clock (C):

Clock input to the CPU.

Set carry (V):

Rising edge on this pin will set the carry bit in the status register.

Addressing modes

Immediate addressing:

This addressing mode is available to all instructions, the operand is
contained in the second word of the instruction and no further memory
addressing is required.

Absolute addressing:

Absolute addressing is only available to LOD (Load) and STO (Store)
instructions. In this addressing mode, data is read/written to memory.
Indexed addressing:

Index addressing is only available to LOD and STO instructions. This
addressing mode is used in conjunction with registers to read/write to
memory at an indexed location. The effective address is calculated by adding
the base address to the contents in a register.

Register addressing:

This form of addressing is represented with a one word instruction,
implying an operation with one or more registers.
Implied addressing:

In the implied addressing mode, the address containing the operand is
implicitly stated in the operation code of the instruction.
Indirect addressing:

Indirect addressing, only available to the JMP (Jump) instruction.
This addressing mode uses data read from memory as the effective address.
Relative addressing:

Relative addressing, only available to the JMP and JSR instructions.
The effective address of relative addressing is determined by adding to the
program counter. For example:

0x1000: BEQ 0x1005

Will result in an offset of 0x0004 (PC == 0x1001 when offset is

applied)

Reset, fetch, execute, and interrupt cycles

Reset:

When the reset pin is pulled HIGH, the CPU will read from address
OxFFFF as the start vector to begin execution. The next clock cycle after
the reset pin is LOW will latch the start vector to the PC.

Fetch:

During the fetch cycle, the CPU outputs the current program counter to
the address bus and sets the segment to the code segment register, to read
the next opcode. When the clock signal is pulled HIGH, the CPU latches the
opcode into the instruction register, the PC is incremented, and the CPU
starts to read the next value as the immediate data. When the clock goes
back to LOW, the CPU latches the immediate data, the PC is incremented if
immediate data is used in the opcode (otherwise the latched data is
discarded), and the CPU is put into the execute phase. If the instruction
does not do a memory access, the CPU will go back to fetch while executing
the instruction.

Execute:

During the execute phase, the instruction is executed.
Interrupt:

The interrupt is triggered on the next fetch cycle when: The interrupt
disable bit is cleared for the specified interrupt and the corresponding
interrupt pin is pulled HIGH. When the interrupt is triggered, during the
fetch cycle, the value 0x0X00 (BRK) is force loaded into the instruction

register (where X is the interrupt number), but the PC is not incremented.

During an interrupt an interrupt is not able to trigger again until the CPU

leaves the interrupt state with a return from interrupt

(RTI) instruction.

Exception being the BRK instruction able to trigger an interrupt while

inside of an interrupt, if used improperly this can cause major bugs or a

crash. If the interrupt is triggered by a BRK instruction,

pin, the B bit is set in the status register.

Timings

Reset cycle:

Clock //

2
Reset / ﬂ ‘\

and not from the

Address bus % ﬂ W
Data bus 7 /| ADDR } 7%
Read ﬂ ﬂ
Write % ﬂ(

Fetch cycle:

Addressbus FETCH) FETCH)}~

Databus CMD } DATA

X

Read
Write

%
1%

Execute cycle (Instruction that reads from memory) :

Reset
Address bus ADDR)7
Data bus DATA } %

Read

Write

Execute cycle (Instruction that writes to memory) :

Heset
Address bus ADDR } 7
Data bus DATA } 7

Read f
Write f "..

Full reset fetch and execute example (Instruction that writes to mem.):

Clock %) /I A S A U A U
Reset / ﬂ \
Address bus Z J \ FETCH) FETCH ADDR &
Data bus A /| ADDR ¥ cMD ¥ ADDR DATA)&
Read 4 ﬂ \ fi
Wiite %) I /A U

Instruction Set Architecture

Registers:

The LWC33 has 16 internal accessible registers. There are 12 general
purpose registers and 4 special purpose registers.

Registers 1 to 12 are labeled r0O-rll, register 13 is the result
register (rr) (Modified using MUL, DIV, SMUL, SDIV and shifting operations,
otherwise may be used like a normal register), register 14 is the stack
pointer (sp), register 15 is a status register (st), and register 0 is a
special immediate data, read-only register. Register 0 is latched with
immediate data on the second phase of the fetch cycle, this register is used
like any other register to provide a flexible, but simple instruction set.

In addition to the 16 main register, there are 16 sub-registers which
can be read/written to using the SBR instruction.

Sub-register list:

0: INTO - Interrupt
instruction)

o

vector (This vector is used only with the BRK

INT1 - Interrupt 1 vector
INT2 - Interrupt 2 vector
INT3 - Interrupt 3 vector
INT4 - Interrupt 4 vector

BP - Base pointer

SM - Stack mask

VMV - Virtual memory base vector

VMS - Virtual memory size

9: VMSG - Virtual memory segment

10: VMBP - Virtual memory stack base pointer

11: VMSM — Virtual memory stack mask

12: CS - Code segment register

13: DS - Data segment register

14: SPSWP - Stack pointer swap, swapped when entering / exiting V-MEM

O Joy Ui W -

mode
15: CTRL - General control register

Instruction encoding:
Instruction are encoded in 16 bit opcodes, the opcode contains the
instruction, operand 1, operand 2, and operand 3.

ITIIXXXXYYYYZZZZ

Least significant bit is on the right.

I (4 bits) Instruction

X (4 bits): Operand 1 register selector

Y (4 bits): Operand 2 register selector

Z (4 bits) General instruction options / register selector (AKA Operand 3)

Each instruction may use one, two or all three operands as inputs.
Operand 1 and 2 are selectors to select which registers to use as inputs to
the instruction, instructions that generates a result will be stored back to
the register selected with operand 1, except the memory write instructions
where operand 1 is the register used to write to memory. Operand 3 is used
differently depending on the instruction. Operand 3 may be used as the index
register for store and load instructions, ALU function selector, conditional

jump selector, etc.

Register (CONTINUED) :
Stack pointer:

The stack pointer register is a read and writable register that is
automatically incremented/decremented when using the stack instructions
(push, pop, jump to subroutine, return from subroutine, and return from
interrupt). The SP register is a pre-decrement / post-increment model,
meaning that when pushing to the stack, the stack pointer is decremented
before writing to memory, and reads from memory before incrementing.

The stack register does not point to a memory address directly. It is
used in combination with the base pointer register for the final offset.
When writing to this register, or when a stack operation is performed, it is

bitwise anded together with the status mask register.

Base pointers:

The base pointer registers are the stack base location, when using the
stack pointer in load/store instructions as the address or index, or when
using a stack operation (push, pop, jump to subroutine, return from
subroutine, and return from interrupt), the base pointer is added to the
stack pointer as the effective address.

Stack mask:

The stack mask register is used to limit the stack’s size, in powers
of two. When writing to the stack pointer register, or when a stack
operation is performed, the stack pointer is bitwise anded together with
this register. This register must be set in a way to mask out upper bits in
the stack pointer. For example, values like 0x000f, 0x001f Oxffff, are

valid, where a value like 0x0505 is not.

Status register:
The status is a read and write register containing the flags that hold

the CPU’s state, in V-MEM mode the upper 8 bits cannot be changed. Status

bits:

0: Carry (C) - Carry overflow from addition unit.

1: Zero (Z) - Set when the result from an instruction is zero.

2: Negative (N) - Set when the result from an instruction as the MSB
set.

3: Unused

4: AUX0 - Set on the rising edge of X0

5: AUX1 - Set on the rising edge of X1

6: AUX2 - Set on the rising edge of X2

7: AUX3 - Set on the rising edge of X3

8: Interrupt disable 1 - Disables interrupt pin Q1

9: Interrupt disable 2 - Disables interrupt pin Q2

10: Interrupt disable 3 - Disables interrupt pin Q3

11: Interrupt disable 4 - Disables interrupt pin Q4

12: V-MEM enabled - Set while V-MEM mode is currently enabled, or used
to enter V-MEM on a return from interrupt.

13: Absolute access - When set, programs running in V-MEM mode will be
able to address all of memory instead only the virtual memory space.

14: Unsafe - Allows programs running in V-MEM mode to access devices
above 0x00ff, modify the status register bits 8-15, modify any instruction,
and modify any sub-register.

15: BRK (B) - Set when interrupt is triggered via BRK

Virtual memory register:

The virtual memory registers are used to setup the virtual memory. VMV
(Virtual Memory Vector) points to the bottom of the virtual memory. VMS is
the size of the virtual memory. VMSG is the segment which the virtual memory
lives in, VMBP is the stack base pointer for virtual memory, VMSM is the
stack mask for the virtual memory.

What does the virtual memory do? Virtual memory, like in it’s name, is
a virtual region of memory where the program running in it can only read,
write and execute in that region. While in virtual memory mode the program
is unable to write to sub-registers, write to the upper 8 bits of the status
register, or access devices from 0x0100 to Oxffff (But can for devices
0x0000 to 0x00ff). For a program to access external functionality, it must
use system calls, which can be achieved by using BRK to trigger INTO with rO

set to a system call number, and other registers used as arguments.

Segment register:

The segment registers, CS (Code segment) and DS (Data segemnt), are
use to select memory segments. The code segment is used whenever fetching
instructions, and when reading/writing to memory (LOD, STO, and stack

operations) the data segment is used.

Control sub-register:

The sub-register named control, or CIRL is used for some extra
functionality. Currently when writing to this register with these bits
active:

0: Backup general purpose registers and status register.

1: Restore general purpose registers and status register.

2: Restore general purpose registers only.

3: Restore status register only.

Instructions

The LWC33 has only 16 instructions, but due to the instruction

encoding, every one of these instructions can be powerful.

0x0 - BRK

BReaK enters an interrupt routine. When this instruction is executed,
the CPU pushes the current PC to the stack and sets the PC to the address
set with the INT instruction. The B flag is set in the status.

Operand 1: Interrupt number

0xl1l - JMP

JuMP sets the PC to the value in operand 1 if condition is true.
Condition is set using bits, where if the specified bits set in the
condition ANDed with the corresponding bits in the status register, result
to a non-zero, the jump is taken. If invert is set, the jump is taken if the
condition is false. For a jump always, set invert with no condition.
Operand 1: Address to jump to
Operand 2: Condition+Addressing selection

Bits:

0: AUX0O Condition bit

1: AUX1 Condition bit

2: Relative addressing

3: Indirect addressing

Operand 3: Condition
0: Carry conditional
1: Zero condition
2: Negative condition

3: Invert

0x2 - MOV
MOVe copies contents from one register to another.
Operand 1: Destination register
Operand 2: Source register
Operand 3: If set to 1, ZN is not updated

Modifies: ZN

0x3 - LOD

LoaD from memory at the specified address. If the stack pointer is
used for addressing, the base pointer is automatically added to the
effective address.
Operand 1: Destination register
Operand 2: Address
Operand 3: If not 0, this will specify an index register. (Effective address
= OP2+0P3)

Modifies: ZN

0x4 - STO

STOre to memory at the specified address. If the stack pointer is used
for addressing, the base pointer is automatically added to the effective
address.

Operand 1: Source register

Operand 2: Address
Operand 3: If not 0, this will specify an index register. (Effective address

= OP2+0P3)

0x5 - ALU

Perform an ALU operation on two registers and store the result back to
the first operand. If the ALU function is bit shifting, operand 2 is
ignored.
Operand 1: Data
Operand 2: Data
Operand 3: ALU function
Modifies: CZN (Does not modify the carry on bitwise operations and the
shifting operations)

ALU functions:

0x0 - ADD (Add)

Ox1 - ADC (Add with carry)

0x2 — SUB (Subtraction)

0x3 - SBC (Subtract with carry)

Ox4 - AND (Bitwise AND)

0X5 — OR (Bitwise OR)

0x6 — XOR (Bitwise XOR)

0X7 - RAND (Gets a random number in the range from 0 to OP2 inclusive)

0x8 - SHL (Shift OP1 left by OP2 bits)

0x9 - ROL (Shift OP1 left by OP2 bits, bits shifted in are shifted
from the RR register)

0xA - SHR (Shift OP1 right by OP2 bits)

0xB — ROR (Shift OP1 right by OP2 bits, bits shifted in are shifted

from the RR register)

0xC MUL (Unsigned multiply)

Upper 16 bits of result stored in rr

0xD SMUL (Signed multiply)
Upper 16 bits of result stored in rr
OxE - DIV (Unsigned divide)

Remainder stored in rr

OxF

SDIV (Singed divide)

Remainder stored in rr

0x6 — CMP
CoMPare two values. Same as ALU, except that the result is not stored
back into OPL1.
Operand 1: Data
Operand 2: Data
Operand 3: ALU function
Modifies: CZN (Does not modify the carry on bitwise operations and the

shifting operations)

0x7 - SBR
SuBRegister. This instruction is to read or write a sub-register.
Operand 1: Source/Destination register
Operand 2: Sub-register number
Operand 3: If 1, write register OP1 to sub-register, otherwise read sub-

regsiter into OP1.

0x8 - JPS

JumP Segment Jjumps into a segment. This instruction sets the CS
register and jumps to an address in that segment. This instruction also has
a second function, which is to jump into virtual memory. When jumping into
virtual memory, the interrupt state is also cleared, so this can be another

way to exit the interrupt to virtual memory instead.

0x9 - DEV
DEVice. Read or write to a device through the device port.
Operand 1: Source/Destination register
Operand 2: Device number
Operand 3: If 1, write register OP1 to the device, otherwise read from the
device into register OP1.

Modifies: ZN on read

OxA - PUSH
PUSH data onto the stack.

Operand 1: Data

0xB — POP
POP data off of the stack and write it into a register.
Operand 1: Destination register

Modifies: ZN

0xC - JSR
Jump to SubRoutine. Push the current PC to the stack and set the PC to
operand 1. Operand 2 and operand 3 are the same as JMP, except JSR does not

support indirect addressing.

Operand 1: Address
Operand 2: Condition+Addressing selection

Operand 3: Condition

0xD - RTS
ReTurn from Subroutine. Pop the return address from the stack and

write it to the PC.

OxE - RTI
ReTurn from Interrupt. Pop the return address from the stack and write

it to the PC, and exit from the interrupt state.

OxF - NOP

No Operation. This does nothing except waste a cycle.

ASSEMBLY REFERENGE

Letters in “supported classes” are what types of operands are valid for each

instruction. Operand type list is listed under this table.

Mnemonic Supported classes Short Description

brk B Trigger interrupt

Jjmp ABPQ Jump to an address

jmp short AB Relative jump to address

jmp far Da Jump to address in
segment

Jmp virt AB Jump to address in vmem

jsr AB Jump to subroutine

jsr short AB Relative jump to
subroutine

bcs AB Branch if carry set

bcc AB Branch if carry clear

beqg AB Branch if zero/equal

bne AB Branch if not zero/eq.

bmi AB Branch if minus

bpl AB Branch if plus

bxa AB Branch if AUXO

bna AB Branch if not AUXO

bxb AB Branch if AUX1

bnb AB Branch if not AUX1

scs AB Subroutine if carry set
(= Like Dbcs)

scc AB - Like bcc

seq AB - Like beq

sne AB - Like bne

smi AB - Like bmi

spl AB - Like bpl

sxa AB - Like bxa

sna AB - Like bna

sxb AB - Like bxb

snb AB - Like bnb

mov CDFGHIJKLMNORST Copy data between two
locations

movs CD Copy data between
registers without
updating status
add CDE Add two values
adds CDE Add without storing
adc CDE Add with carry two
values
adcs CDE Adc without storing
sub CDE Subtract two values
subs (Alias: cmp) CDE Sub without storing
sbc CDE Sub with carry
sbcs CDE Sbc without storing
and CDE And two values
ands (Alias: bit) CDE And without storing
or CDE Or two values
ors CDE Or without storing
XOr CDE Xor two values
XOrs CDE Xor without storing
rand CDE Get random number
rands CDE Rand without storing
shl CDE Shift left wvalue
shls CDE Shl without storing
rol CDE Rotate left value
rols CDE Rol without storing
shr CDE Shift right wvalue
shrs CDE Shr without storing
ror CDE Rotate right wvalue
rors CDE Ror without storing
mul CDE Multiply two values
muls CDE Mul without storing
smul CDE Multiply two signed
values
smuls CDE Smul without storing
div CDE Divide two values
divs CDE Div without storing
sdiv CDE Divide two signed values
sdivs CDE Sdiv without storing
in CD Input data from device
out CDE Output data to device

push

]
o

Push data to stack

pop A Pop data from stack

rts 0 Return from subroutine

rti 0 Return from interrupt

sec 0 Set carry

clc 0 Clear carry

sez 0 Set zero

clz 0 Clear zero

sen 0 Set negative

cln 0 Clear negative

sax0 0 Set AUXO

saxl 0 Set AUX1

sax2 0 Set AUX2

sax3 0 Set AUX3

clx0 0 Clear AUXO

clxl 0 Clear AUX1

clx2 0 Clear AUX2

clx3 0 Clear AUX3

sax 0 Set all AUX

clx 0 Clear all AUX

seil 0 Set interrupt disable 1

sei?2 0 Set interrupt disable 2

sei3 0 Set interrupt disable 3

seid 0 Set interrupt disable 4

clil 0 Clear interrupt disable
1

cli2 0 Clear interrupt disable
2

cli3 0 Clear interrupt disable
3

cli4 0 Clear interrupt disable
4

sei 0 Disable all interrupts

cli 0 Clear all interrupts

sevm 0 Set V-MEM enable

clvm 0 Clear V-MEM enable

saa 0 Set absolute access

caa 0 Clear absolute access

seu 0 Set unsafe

clu 0 Clear unsafe
backup 0 Backup all registers
restore 0 Restore all register
restoregp 0 Restore general purpose
registers

restorest 0 Restore status register
Operand classes:

OPER

OPER REG

OPER Ul16/I16

OPER REG, REG

OPER REG, Ul6/I16

OPER
OPER
OPER
OPER
OPER
OPER
OPER
OPER
OPER
OPER
OPER
OPER
OPER
OPER
OPER
OPER

HnPIOWYWOoOZRIHPRgHIEQAEDOQWPO

a: OPER Ul6/I16, U4

Ul6/I16, REG
REG, [U16]
REG, [REG]
REG, [REG+U16]
REG, [REG+REG]
[U16], REG
[REG], REG
[REG], I16
[U16+REG], REG
[REG+REG], REG
[REG+REG], I16
(REG)

(Ul6)

REG, SUBREG
SUBREG, REG
SUBREG, Il6

MOV, MOVS - Copy value

mov rl, r2 ; Copy data from r2 into rl

mov rl, [addr] ; Load from address addr and store to rl

mov [addr], rl ; Store rl to address addr

mov rl, [addr+r2] ; Read from an indexed location

mov rl, [r2+r3] ; Read from an indexed location using only registers
mov simply copies the value from the second operand to the first. movs is a
variation that doesn’t update flags. To read or write memory, using square
brackets define that the value should be used as a memory address. See

supported classes F-0O.

ADD, ADC, ADDS, ADCS, SUB, SBC, SUBS, SBCS, MUL, SMUL, DIV, SDIV, MULS,
SMULS, DIVS, SDIVS - Arithmetic

add data, data

sub data, data

etc.
These instruction all perform arithmetic on the first and second operand,
and the result is stores back to the first operand. The instructions with
the “S” appended to the end does not store the value back to the first

operand.

AND, OR XOR, ANDS, ORS, XORS - Bitwise logic

and data, data

or data, data

etc.
These instructions perform bitwise logic on the first and second operands,
stores the result into the first operand. The instructions with the “S”

appended to the end does not store the value back to the first operand.

SHL, SHR, ROL, ROR, SHLS, SHRS, ROLS, RORS - Shifting

shl rl, 8 ; Shift left by 8

rol rl, 8 ; Rotate left by 8

etc.
Shifting operands shift bits in operand 1 by the amount specified by operand
2. Before shifting, the value in opl is copied into register rr. When
performing a rotate instruction, the bits shifted in are from the data in

register rr.

JMP, JMP SHORT, JMP FAR, JMP VIRT - Jumping
jmp addr ; Jump to absolute address addr
Jmp (addr) ; Jump to address specific by data in memory at addr
jmp short addr ; Jump to addr using relative addressing
jmp far 0x8000, 4 ; Jump to address 0x8000 in segment 4

jmp virt 0x0000; Jump into virtual memory at address O

Jumping changes the execution to the new address. jmp sets the program
counter, Jjmp short sets the program counter relative to the current
location, good for relocatable code. jmp far sets the code segment register

and the program counter. jmp virt enables virtual memory mode and sets the

program counter.

BCS, BCC, BEQ, BNE, BMI, BPL, BXA, BNA, BXB, BNB - Branching
bcs addr ; Branch if carry set to addr
bxa addr ; Branch if AUX0 flag is set
bne addr ; Branch if zero not set or compare not equals

etc.

Branching is a jump that happens only on the specified condition. Branching

uses relative addressing.

JSR, JSR SHORT, RTS - Subroutines

jsr addr ; Execute subroutine at address addr

jsr short addr ; Execute subroutine using relative addressing

rts ; Return from subroutine
Subroutines are a piece of code which is able to return code execution back
to where it was called from. When a jsr is executed, the current program
counter is pushed to the stack automatically, and the program counter is set
to the address of the subroutine. the rti instruction returns from the

subroutine.

SCS, SCC, SEQ, SNE, SMI, SPL, SXA, SNA, SXB, SNB - Conditional subroutines
Conditional subroutines are almost exactly the same as normal branching,
except that they do a jump to subroutine instead of a normal jump.

Conditional subroutines are also relative addressing.

IN, OUT - Device I/O

in r1, 0x80 ; Read data from device 0x80 into ril

out r2, rl ; Write data from rl into device number stores in r2
The in and out instruction are used to read and write to devices on the

CPU’s device I/O port.

