

MICROCOMPUTERS

MICROCOMPUTERS
MICROCOMPUTERS

MICROCOMPUTERS
LWC33

HARDWARE & PROGRAMMING
MANUAL

TURNER SEMICONDUCTOR

LWC33 Hardware & Programming Manual

Revision 2

26/ 03 / 2025

LWC33 Features

• Sixteen bit parallel processing
• 16 instructions
• 16 ALU Operations
• 12 General purpose registers
• 7 addressing modes
• True indexing capabilities
• Programmable stack pointer
• Variable length stack
• 16 bit bi-directional device

bus

• Interrupt capability (4)
• Use with any type or speed

memory
• 16 bit bi-directional Data Bus
• Addressable memory range of up

to 1M words, 65K addressable at
once.

• Sync output
• Pause pin

Pinout

Viewing the CPU from the top:

 IIIIIIIIIIIIIIII WR OOOOOOOOOOOOOOOO XXXX QQQQ

===

SSSS AAAAAAAAAAAAAAAA WR DDDDDDDDDDDDDDDD T YP C V

I: Device ID output (Left to right: I0-I15)

W (top): Device bus write

R (top): Device bus read

O: Device bus data I/O (D0-D15)

X: AUX flag Set (X0-X3)

Q: Interrupt request (Q1-Q4)

S: Memory segment output (S0-S3)

A: Memory address output (A0-A15)

W (bottom): Memory write

R (bottom): Memory read

D: Memory data I/O (D0-D15)

T: Reset

Y: Sync out

P: Pause

C: Clock

V: Set carry

Device ID (D0-D15):

When reading or writing to a device, this is set to the requested

device ID.

Device write (W top):

When writing to a device, this pin is active on the second half of the

clock cycle.

Device read (R top):

When reading a device, this pin is active.

AUX flag set (X0-X3):

On the rising edge at any time, the AUX bit corresponding to the pin

will be set.

Interrupt request (Q1-Q4):

While the CPU is fetching an instruction, the CPU will force load BRK

when any of these pins are pulled HIGH, and the corresponding interrupt

INT1-INT4 is executed.

Memory segment output (S0-S3):

Selects a memory segment to read/write.

Memory address output (A0-A15):

16 bit address to allow up to 65K of addressable memory at one time.

Memory write (W bottom):

Active on the second half of the clock cycle when writing to memory.

Memory read (R bottom):

Active while CPU is reading memory.

Memory data I/O (D0-D15):

16 bit bi-directional data bus, transferring data to and from memory.

Reset (T):

Reset is used to initialize the CPU, while this pin is held high, the

CPU will not execute any instructions, the data bus is cleared, segment is

cleared, and the address bus is set to 0xFFFF, and the read pin is pulled

HIGH. On the falling edge of the next clock cycle after reset is LOW. The

data currently on the memory data bus is loaded into the program counter.

During a reset, interrupts are disabled, segment registers are cleared, V-

MEM is disabled, but register states are not changed.

Sync out (S):

This pin is pulled HIGH while the CPU is fetching an instruction.

Pause (P):

After the CPU completes an instruction, if this pin is HIGH, CPU

outputs (Segment, address, data, read, write) are cleared. The next clock

cycle after pause is set to LOW again will resume normal execution.

Clock (C):

Clock input to the CPU.

Set carry (V):

Rising edge on this pin will set the carry bit in the status register.

Addressing modes

Immediate addressing:

This addressing mode is available to all instructions, the operand is

contained in the second word of the instruction and no further memory

addressing is required.

Absolute addressing:

Absolute addressing is only available to LOD (Load) and STO (Store)

instructions. In this addressing mode, data is read/written to memory.

Indexed addressing:

Index addressing is only available to LOD and STO instructions. This

addressing mode is used in conjunction with registers to read/write to

memory at an indexed location. The effective address is calculated by adding

the base address to the contents in a register.

Register addressing:

This form of addressing is represented with a one word instruction,

implying an operation with one or more registers.

Implied addressing:

In the implied addressing mode, the address containing the operand is

implicitly stated in the operation code of the instruction.

Indirect addressing:

Indirect addressing, only available to the JMP (Jump) instruction.

This addressing mode uses data read from memory as the effective address.

Relative addressing:

Relative addressing, only available to the JMP and JSR instructions.

The effective address of relative addressing is determined by adding to the

program counter. For example:

0x1000: BEQ 0x1005

Will result in an offset of 0x0004 (PC == 0x1001 when offset is

applied)

Reset, fetch, execute, and interrupt cycles

Reset:

When the reset pin is pulled HIGH, the CPU will read from address

0xFFFF as the start vector to begin execution. The next clock cycle after

the reset pin is LOW will latch the start vector to the PC.

Fetch:

During the fetch cycle, the CPU outputs the current program counter to

the address bus and sets the segment to the code segment register, to read

the next opcode. When the clock signal is pulled HIGH, the CPU latches the

opcode into the instruction register, the PC is incremented, and the CPU

starts to read the next value as the immediate data. When the clock goes

back to LOW, the CPU latches the immediate data, the PC is incremented if

immediate data is used in the opcode (otherwise the latched data is

discarded), and the CPU is put into the execute phase. If the instruction

does not do a memory access, the CPU will go back to fetch while executing

the instruction.

Execute:

During the execute phase, the instruction is executed.

Interrupt:

The interrupt is triggered on the next fetch cycle when: The interrupt

disable bit is cleared for the specified interrupt and the corresponding

interrupt pin is pulled HIGH. When the interrupt is triggered, during the

fetch cycle, the value 0x0X00 (BRK) is force loaded into the instruction

register (where X is the interrupt number), but the PC is not incremented.

During an interrupt an interrupt is not able to trigger again until the CPU

leaves the interrupt state with a return from interrupt (RTI) instruction.

Exception being the BRK instruction able to trigger an interrupt while

inside of an interrupt, if used improperly this can cause major bugs or a

crash. If the interrupt is triggered by a BRK instruction, and not from the

pin, the B bit is set in the status register.

Timings

Reset cycle:

Fetch cycle:

Execute cycle (Instruction that reads from memory):

Execute cycle (Instruction that writes to memory):

Full reset fetch and execute example (Instruction that writes to mem.):

PROGRAMMING

Instruction Set Architecture

Registers:

The LWC33 has 16 internal accessible registers. There are 12 general

purpose registers and 4 special purpose registers.

Registers 1 to 12 are labeled r0-r11, register 13 is the result

register (rr) (Modified using MUL, DIV, SMUL, SDIV and shifting operations,

otherwise may be used like a normal register), register 14 is the stack

pointer (sp), register 15 is a status register (st), and register 0 is a

special immediate data, read-only register. Register 0 is latched with

immediate data on the second phase of the fetch cycle, this register is used

like any other register to provide a flexible, but simple instruction set.

In addition to the 16 main register, there are 16 sub-registers which

can be read/written to using the SBR instruction.

Sub-register list:

0: INT0 - Interrupt 0 vector (This vector is used only with the BRK
instruction)

1: INT1 - Interrupt 1 vector
2: INT2 - Interrupt 2 vector
3: INT3 - Interrupt 3 vector
4: INT4 - Interrupt 4 vector
5: BP – Base pointer
6: SM – Stack mask
7: VMV – Virtual memory base vector
8: VMS – Virtual memory size
9: VMSG – Virtual memory segment
10: VMBP – Virtual memory stack base pointer
11: VMSM – Virtual memory stack mask
12: CS – Code segment register
13: DS – Data segment register
14: SPSWP – Stack pointer swap, swapped when entering / exiting V-MEM

mode
15: CTRL – General control register

Instruction encoding:

Instruction are encoded in 16 bit opcodes, the opcode contains the

instruction, operand 1, operand 2, and operand 3.

IIIIXXXXYYYYZZZZ

Least significant bit is on the right.

I (4 bits): Instruction
X (4 bits): Operand 1 register selector
Y (4 bits): Operand 2 register selector
Z (4 bits): General instruction options / register selector (AKA Operand 3)

Each instruction may use one, two or all three operands as inputs.

Operand 1 and 2 are selectors to select which registers to use as inputs to

the instruction, instructions that generates a result will be stored back to

the register selected with operand 1, except the memory write instructions

where operand 1 is the register used to write to memory. Operand 3 is used

differently depending on the instruction. Operand 3 may be used as the index

register for store and load instructions, ALU function selector, conditional

jump selector, etc.

Register (CONTINUED):

Stack pointer:

The stack pointer register is a read and writable register that is

automatically incremented/decremented when using the stack instructions

(push, pop, jump to subroutine, return from subroutine, and return from

interrupt). The SP register is a pre-decrement / post-increment model,

meaning that when pushing to the stack, the stack pointer is decremented

before writing to memory, and reads from memory before incrementing.

The stack register does not point to a memory address directly. It is

used in combination with the base pointer register for the final offset.

When writing to this register, or when a stack operation is performed, it is

bitwise anded together with the status mask register.

Base pointers:

The base pointer registers are the stack base location, when using the

stack pointer in load/store instructions as the address or index, or when

using a stack operation (push, pop, jump to subroutine, return from

subroutine, and return from interrupt), the base pointer is added to the

stack pointer as the effective address.

Stack mask:

The stack mask register is used to limit the stack’s size, in powers

of two. When writing to the stack pointer register, or when a stack

operation is performed, the stack pointer is bitwise anded together with

this register. This register must be set in a way to mask out upper bits in

the stack pointer. For example, values like 0x000f, 0x001f 0xffff, are

valid, where a value like 0x0505 is not.

Status register:

The status is a read and write register containing the flags that hold

the CPU’s state, in V-MEM mode the upper 8 bits cannot be changed. Status

bits:

0: Carry (C) – Carry overflow from addition unit.
1: Zero (Z) – Set when the result from an instruction is zero.
2: Negative (N) – Set when the result from an instruction as the MSB

set.
3: Unused
4: AUX0 – Set on the rising edge of X0
5: AUX1 – Set on the rising edge of X1
6: AUX2 – Set on the rising edge of X2
7: AUX3 – Set on the rising edge of X3
8: Interrupt disable 1 – Disables interrupt pin Q1
9: Interrupt disable 2 – Disables interrupt pin Q2
10: Interrupt disable 3 – Disables interrupt pin Q3
11: Interrupt disable 4 – Disables interrupt pin Q4
12: V-MEM enabled – Set while V-MEM mode is currently enabled, or used

to enter V-MEM on a return from interrupt.
13: Absolute access – When set, programs running in V-MEM mode will be

able to address all of memory instead only the virtual memory space.
14: Unsafe – Allows programs running in V-MEM mode to access devices

above 0x00ff, modify the status register bits 8-15, modify any instruction,
and modify any sub-register.

15: BRK (B) – Set when interrupt is triggered via BRK

Virtual memory register:

The virtual memory registers are used to setup the virtual memory. VMV

(Virtual Memory Vector) points to the bottom of the virtual memory. VMS is

the size of the virtual memory. VMSG is the segment which the virtual memory

lives in, VMBP is the stack base pointer for virtual memory, VMSM is the

stack mask for the virtual memory.

What does the virtual memory do? Virtual memory, like in it’s name, is

a virtual region of memory where the program running in it can only read,

write and execute in that region. While in virtual memory mode the program

is unable to write to sub-registers, write to the upper 8 bits of the status

register, or access devices from 0x0100 to 0xffff (But can for devices

0x0000 to 0x00ff). For a program to access external functionality, it must

use system calls, which can be achieved by using BRK to trigger INT0 with r0

set to a system call number, and other registers used as arguments.

Segment register:

The segment registers, CS (Code segment) and DS (Data segemnt), are

use to select memory segments. The code segment is used whenever fetching

instructions, and when reading/writing to memory (LOD, STO, and stack

operations) the data segment is used.

Control sub-register:

The sub-register named control, or CTRL is used for some extra

functionality. Currently when writing to this register with these bits

active:

0: Backup general purpose registers and status register.

1: Restore general purpose registers and status register.

2: Restore general purpose registers only.

3: Restore status register only.

Instructions

The LWC33 has only 16 instructions, but due to the instruction

encoding, every one of these instructions can be powerful.

0x0 – BRK

BReaK enters an interrupt routine. When this instruction is executed,

the CPU pushes the current PC to the stack and sets the PC to the address

set with the INT instruction. The B flag is set in the status.

Operand 1: Interrupt number

0x1 – JMP

JuMP sets the PC to the value in operand 1 if condition is true.

Condition is set using bits, where if the specified bits set in the

condition ANDed with the corresponding bits in the status register, result

to a non-zero, the jump is taken. If invert is set, the jump is taken if the

condition is false. For a jump always, set invert with no condition.

Operand 1: Address to jump to

Operand 2: Condition+Addressing selection

Bits:

0: AUX0 Condition bit

1: AUX1 Condition bit

2: Relative addressing

3: Indirect addressing

Operand 3: Condition

0: Carry conditional

1: Zero condition

2: Negative condition

3: Invert

0x2 – MOV

MOVe copies contents from one register to another.

Operand 1: Destination register

Operand 2: Source register

Operand 3: If set to 1, ZN is not updated

Modifies: ZN

0x3 – LOD

LoaD from memory at the specified address. If the stack pointer is

used for addressing, the base pointer is automatically added to the

effective address.

Operand 1: Destination register

Operand 2: Address

Operand 3: If not 0, this will specify an index register. (Effective address

= OP2+OP3)

Modifies: ZN

0x4 – STO

STOre to memory at the specified address. If the stack pointer is used

for addressing, the base pointer is automatically added to the effective

address.

Operand 1: Source register

Operand 2: Address

Operand 3: If not 0, this will specify an index register. (Effective address

= OP2+OP3)

0x5 – ALU

Perform an ALU operation on two registers and store the result back to

the first operand. If the ALU function is bit shifting, operand 2 is

ignored.

Operand 1: Data

Operand 2: Data

Operand 3: ALU function

Modifies: CZN (Does not modify the carry on bitwise operations and the

shifting operations)

ALU functions:

0x0 – ADD (Add)

0x1 – ADC (Add with carry)

0x2 – SUB (Subtraction)

0x3 – SBC (Subtract with carry)

0x4 – AND (Bitwise AND)

0X5 – OR (Bitwise OR)

0x6 – XOR (Bitwise XOR)

0X7 – RAND (Gets a random number in the range from 0 to OP2 inclusive)

0x8 – SHL (Shift OP1 left by OP2 bits)

0x9 – ROL (Shift OP1 left by OP2 bits, bits shifted in are shifted

from the RR register)

0xA – SHR (Shift OP1 right by OP2 bits)

0xB – ROR (Shift OP1 right by OP2 bits, bits shifted in are shifted

from the RR register)

0xC – MUL (Unsigned multiply)

Upper 16 bits of result stored in rr

0xD – SMUL (Signed multiply)

Upper 16 bits of result stored in rr

0xE – DIV (Unsigned divide)

Remainder stored in rr

0xF – SDIV (Singed divide)

Remainder stored in rr

0x6 – CMP

CoMPare two values. Same as ALU, except that the result is not stored

back into OP1.

Operand 1: Data

Operand 2: Data

Operand 3: ALU function

Modifies: CZN (Does not modify the carry on bitwise operations and the

shifting operations)

0x7 – SBR

SuBRegister. This instruction is to read or write a sub-register.

Operand 1: Source/Destination register

Operand 2: Sub-register number

Operand 3: If 1, write register OP1 to sub-register, otherwise read sub-

regsiter into OP1.

0x8 – JPS

JumP Segment jumps into a segment. This instruction sets the CS

register and jumps to an address in that segment. This instruction also has

a second function, which is to jump into virtual memory. When jumping into

virtual memory, the interrupt state is also cleared, so this can be another

way to exit the interrupt to virtual memory instead.

0x9 – DEV

DEVice. Read or write to a device through the device port.

Operand 1: Source/Destination register

Operand 2: Device number

Operand 3: If 1, write register OP1 to the device, otherwise read from the

device into register OP1.

Modifies: ZN on read

0xA – PUSH

PUSH data onto the stack.

Operand 1: Data

0xB – POP

POP data off of the stack and write it into a register.

Operand 1: Destination register

Modifies: ZN

0xC – JSR

Jump to SubRoutine. Push the current PC to the stack and set the PC to

operand 1. Operand 2 and operand 3 are the same as JMP, except JSR does not

support indirect addressing.

Operand 1: Address

Operand 2: Condition+Addressing selection

Operand 3: Condition

0xD – RTS

ReTurn from Subroutine. Pop the return address from the stack and

write it to the PC.

0xE – RTI

ReTurn from Interrupt. Pop the return address from the stack and write

it to the PC, and exit from the interrupt state.

0xF – NOP

No Operation. This does nothing except waste a cycle.

ASSEMBLY REFERENCE
Letters in “supported classes” are what types of operands are valid for each

instruction. Operand type list is listed under this table.

Mnemonic Supported classes Short Description

brk B Trigger interrupt

jmp ABPQ Jump to an address

jmp short AB Relative jump to address

jmp far Da Jump to address in
segment

jmp virt AB Jump to address in vmem

jsr AB Jump to subroutine

jsr short AB Relative jump to
subroutine

bcs AB Branch if carry set

bcc AB Branch if carry clear

beq AB Branch if zero/equal

bne AB Branch if not zero/eq.

bmi AB Branch if minus

bpl AB Branch if plus

bxa AB Branch if AUX0

bna AB Branch if not AUX0

bxb AB Branch if AUX1

bnb AB Branch if not AUX1

scs AB Subroutine if carry set
(- Like bcs)

scc AB - Like bcc

seq AB - Like beq

sne AB - Like bne

smi AB - Like bmi

spl AB - Like bpl

sxa AB - Like bxa

sna AB - Like bna

sxb AB - Like bxb

snb AB - Like bnb

mov CDFGHIJKLMNORST Copy data between two
locations

movs CD Copy data between
registers without
updating status

add CDE Add two values

adds CDE Add without storing

adc CDE Add with carry two
values

adcs CDE Adc without storing

sub CDE Subtract two values

subs (Alias: cmp) CDE Sub without storing

sbc CDE Sub with carry

sbcs CDE Sbc without storing

and CDE And two values

ands (Alias: bit) CDE And without storing

or CDE Or two values

ors CDE Or without storing

xor CDE Xor two values

xors CDE Xor without storing

rand CDE Get random number

rands CDE Rand without storing

shl CDE Shift left value

shls CDE Shl without storing

rol CDE Rotate left value

rols CDE Rol without storing

shr CDE Shift right value

shrs CDE Shr without storing

ror CDE Rotate right value

rors CDE Ror without storing

mul CDE Multiply two values

muls CDE Mul without storing

smul CDE Multiply two signed
values

smuls CDE Smul without storing

div CDE Divide two values

divs CDE Div without storing

sdiv CDE Divide two signed values

sdivs CDE Sdiv without storing

in CD Input data from device

out CDE Output data to device

push AB Push data to stack

pop A Pop data from stack

rts 0 Return from subroutine

rti 0 Return from interrupt

sec 0 Set carry

clc 0 Clear carry

sez 0 Set zero

clz 0 Clear zero

sen 0 Set negative

cln 0 Clear negative

sax0 0 Set AUX0

sax1 0 Set AUX1

sax2 0 Set AUX2

sax3 0 Set AUX3

clx0 0 Clear AUX0

clx1 0 Clear AUX1

clx2 0 Clear AUX2

clx3 0 Clear AUX3

sax 0 Set all AUX

clx 0 Clear all AUX

sei1 0 Set interrupt disable 1

sei2 0 Set interrupt disable 2

sei3 0 Set interrupt disable 3

sei4 0 Set interrupt disable 4

cli1 0 Clear interrupt disable
1

cli2 0 Clear interrupt disable
2

cli3 0 Clear interrupt disable
3

cli4 0 Clear interrupt disable
4

sei 0 Disable all interrupts

cli 0 Clear all interrupts

sevm 0 Set V-MEM enable

clvm 0 Clear V-MEM enable

saa 0 Set absolute access

caa 0 Clear absolute access

seu 0 Set unsafe

clu 0 Clear unsafe

backup 0 Backup all registers

restore 0 Restore all register

restoregp 0 Restore general purpose
registers

restorest 0 Restore status register

Operand classes:

0: OPER
A: OPER REG
B: OPER U16/I16
C: OPER REG, REG
D: OPER REG, U16/I16
Da: OPER U16/I16, U4
E: OPER U16/I16, REG
F: OPER REG, [U16]
G: OPER REG, [REG]
H: OPER REG, [REG+U16]
I: OPER REG, [REG+REG]
J: OPER [U16], REG
K: OPER [REG], REG
L: OPER [REG], I16
M: OPER [U16+REG], REG
N: OPER [REG+REG], REG
O: OPER [REG+REG], I16
P: OPER (REG)
Q: OPER (U16)
R: OPER REG, SUBREG
S: OPER SUBREG, REG
T: OPER SUBREG, I16

MOV, MOVS – Copy value

mov r1, r2 ; Copy data from r2 into r1

mov r1, [addr] ; Load from address addr and store to r1

mov [addr], r1 ; Store r1 to address addr

mov r1, [addr+r2] ; Read from an indexed location

mov r1, [r2+r3] ; Read from an indexed location using only registers

mov simply copies the value from the second operand to the first. movs is a

variation that doesn’t update flags. To read or write memory, using square

brackets define that the value should be used as a memory address. See

supported classes F-O.

ADD, ADC, ADDS, ADCS, SUB, SBC, SUBS, SBCS, MUL, SMUL, DIV, SDIV, MULS,

SMULS, DIVS, SDIVS - Arithmetic

add data, data

sub data, data

etc.

These instruction all perform arithmetic on the first and second operand,

and the result is stores back to the first operand. The instructions with

the “S” appended to the end does not store the value back to the first

operand.

AND, OR XOR, ANDS, ORS, XORS – Bitwise logic

and data, data

or data, data

etc.

These instructions perform bitwise logic on the first and second operands,

stores the result into the first operand. The instructions with the “S”

appended to the end does not store the value back to the first operand.

SHL, SHR, ROL, ROR, SHLS, SHRS, ROLS, RORS – Shifting

shl r1, 8 ; Shift left by 8

rol r1, 8 ; Rotate left by 8

etc.

Shifting operands shift bits in operand 1 by the amount specified by operand

2. Before shifting, the value in op1 is copied into register rr. When

performing a rotate instruction, the bits shifted in are from the data in

register rr.

JMP, JMP SHORT, JMP FAR, JMP VIRT – Jumping

jmp addr ; Jump to absolute address addr

jmp (addr) ; Jump to address specific by data in memory at addr

jmp short addr ; Jump to addr using relative addressing

jmp far 0x8000, 4 ; Jump to address 0x8000 in segment 4

jmp virt 0x0000; Jump into virtual memory at address 0

Jumping changes the execution to the new address. jmp sets the program

counter, jmp short sets the program counter relative to the current

location, good for relocatable code. jmp far sets the code segment register

and the program counter. jmp virt enables virtual memory mode and sets the

program counter.

BCS, BCC, BEQ, BNE, BMI, BPL, BXA, BNA, BXB, BNB – Branching

bcs addr ; Branch if carry set to addr

bxa addr ; Branch if AUX0 flag is set

bne addr ; Branch if zero not set or compare not equals

etc.

Branching is a jump that happens only on the specified condition. Branching

uses relative addressing.

JSR, JSR SHORT, RTS – Subroutines

jsr addr ; Execute subroutine at address addr

jsr short addr ; Execute subroutine using relative addressing

rts ; Return from subroutine

Subroutines are a piece of code which is able to return code execution back

to where it was called from. When a jsr is executed, the current program

counter is pushed to the stack automatically, and the program counter is set

to the address of the subroutine. the rti instruction returns from the

subroutine.

SCS, SCC, SEQ, SNE, SMI, SPL, SXA, SNA, SXB, SNB – Conditional subroutines

Conditional subroutines are almost exactly the same as normal branching,

except that they do a jump to subroutine instead of a normal jump.

Conditional subroutines are also relative addressing.

IN, OUT – Device I/O

in r1, 0x80 ; Read data from device 0x80 into r1

out r2, r1 ; Write data from r1 into device number stores in r2

The in and out instruction are used to read and write to devices on the

CPU’s device I/O port.

