MICROCOMPUTERS
NCROCONPUTERN

MCROCONPUTERS
NCROCONPUTERN

SM1
HARDWARE & PROGRAMMING
MANUAL




TURNER SEMICONDUCTOR

SM1 Hardware & Programming Manual

Revision 1
20/03/2025




SM1 Features

¢ Sixteen bit parallel processing * Interrupt capability
* 16 instructions * Use with any type or speed
e 12 ALU Operations memory
¢ 13 General purpose registers * 16 bit bi-directional Data Bus
¢ 5 addressing modes * Addressable memory range of up
¢ True indexing capabilities to 65K words
¢ Programmable stack pointer * Bus active output
Pinout

On the SM1, there is 66 pins, these pins are for control signals

to/from the CPU and to interface with memory.

Memory interface

Cyan: Trigger interrupted

Yellow: AO-Al15 (from left to right)

Red: Memory write

Green: Memory read

Magenta: D0-D15 (data out) (from left to right)
Blue: DO-D15 (data in) (from left to right)

Control I/O

Purple (left): X3-X0 (aux in) (from left to right)
Red: Reset

White: Clock input

Purple (left): X7-X0 (aux out) (from left to right)
Blue: Set carry




Address bus (A0-AlS5):

16 bit address to allow up to 65K of addressable memory at one time.
Write:

When the SM1 writes data to the memory bus, this pin is pulsed HIGH
for a duration of one tick.

Read:

While this pin is high, the SM1 is reading data from the specified
address.

Data bus (D0-D15):

16 bit bi-directional data bus, transferring data to and from
peripherals.
Reset:

This input is used to initialize the CPU from a halt state, while this
pin is held high, the CPU will not execute any instructions, the data bus is
set to LOW, the address bus is set to OxFFFF, and the read pin is set to
HIGH. The clock cycle after the reset pin is LOW will set the program
counter (PC) to the value on the data bus. The reset cycle will disable
interrupts, but the registers and stack pointer are not reset.

Clock:

Clock input to the CPU.
Set carry:

Rising edge on this pin will set the carry bit in the status register.
AUX Inputs (X0-X3):

A rising edge on these pins will set the corresponding bits in the
status register.

AUX Outputs (X0-X7):

These bits are the direct state of bits 8-15 of the status register.




Interrupt:
While this pin is HIGH, interrupt disable bit is cleared, and the CPU
is in the fetch phase, 0x0000 (BRK) is force loaded into the instruction

register, and the break bit in the status register is cleared.

Addressing modes

Immediate addressing:

This addressing mode is available to all instructions, the operand is
contained in the second word of the instruction and no further memory
addressing is required.

Absolute addressing:

Absolute addressing is only available to LOD (Load) and STO (Store)
instructions. In this addressing mode, data is read/written to memory.
Indexed addressing:

Index addressing is only available to LOD and STO instructions. This
addressing mode is used in conjunction with registers to read/write to
memory at an indexed location. The effective address is calculated by adding
the base address to the contents in a register.

Register addressing:

This form of addressing is represented with a one word instruction,

implying an operation with one or more registers.
Implied addressing:
In the implied addressing mode, the address containing the operand is

implicitly stated in the operation code of the instruction.




Reset, fetch, execute, and interrupt cycles

Reset:

When the reset pin is pulled HIGH, the CPU will read from address
OxFFFF for the start vector to begin execution. The next clock cycle after
the reset pin is LOW the CPU will latch the start vector to the PC.

Fetch:

During the fetch cycle, the CPU outputs the current program counter to
the address bus to read the next opcode. When the clock signal is pulled
HIGH, the CPU latches the opcode into the instruction register, the PC is
incremented, and the CPU starts to read the next value as immediate data.
When the clock goes back to low, the CPU latches the immediate data, the PC
is incremented if immediate data is used in the opcode (otherwise the
latched data is discarded), and the CPU is put into the execute phase. If
the instruction does not access memory, and a jump is not taken, the CPU
returns immediately back to the fetch phase, and the instruction is executed

during the fetch.

Execute:

During the execute phase, the instruction is executed in two steps,
the first execution phase is executed on the rising edge of the clock, and
the second on the falling edge of the clock.

Interrupt:

The interrupt is triggered on the next fetch cycle when: The interrupt
disable bit is clear, the CPU is currently not in an interrupted state, and
the interrupt pin is pulled HIGH. When an interrupt is triggered, during the
fetch cycle, the value 0x0000 (BRK) is force loaded into the instruction

register, but the PC is not incremented, the PC is pushed to the stack and




the PC is set to the value set by the INT instruction. During an interrupt,
an interrupt is not able to trigger again until the CPU leaves the interrupt
state with a return from interrupt (RTI) instruction, exception being the
BRK instruction able to re-trigger the interrupt. If the interrupt is
triggered by a BRK instruction, and not from the pin, the B (break) bit is

set in the status register.




Instruction Set Architecture

Registers:

The SM1 has 16 internal accessible registers. There are 13 general
purpose registers and 3 special purpose registers.

Registers 1 to 13 are labeled r0-rl2, register 14 is the stack pointer
(sp), register 15 is a status register (st), and register 0 is a special
immediate data, read-only register. Register 0 is latched with immediate
data on the second phase of the fetch cycle, this register is used like any

other register to provide a flexible, but simple instruction set.

Instruction encoding:

Instruction are encoded in 16 bit opcodes, the opcode contains the
instruction, operand 1, operand 2, and operand 3.
Instruction word format: IITIIXXXXYYYYZZZZ <« LSB

Least significant bit is on the right.

I (4 bits) Instruction

X (4 bits): Operand 1 register selector

Y (4 bits): Operand 2 register selector

Z (4 bits): Operand 3 General instruction options / register selector

Each instruction may use one, two or all three operands as inputs.
Operand 1 and 2 are selectors to select which registers to use as inputs to
the instruction, instructions that generates a result will be stored back to
the register selected with operand 1, except the memory write instructions
where operand 1 is the register used to write to memory. Operand 3 1is used
differently depending on the instruction. Operand 3 may be used as the index
register for store and load instructions, ALU function selector, or the

conditional jump selector.




Stack pointer:

The stack pointer register is a read and writable register that is
automatically incremented/decremented when using the stack instructions
(push, pop, jump to subroutine, return from subroutine, and return from
interrupt). The SP register is a pre-decrement / post-increment model,
meaning that when pushing to the stack, the stack pointer is decremented

before writing to memory, and reads from memory before incrementing.

Status register:

The status is a read and write register containing the flags that hold
the CPU’s state, the flags are: Carry (C), Zero (Z), Negative (N), Interrupt
disable (I), Break (B), AUX0-3 (X0-X3), they correspond to bit 0, 1, 2, 3,
4, 8, 9, 10, 11 respectively. A carry is generated when shifting a bit out
with shift functions, or when a carry occurs from an arithmetic function.
The zero flag is set when a value written to a register is NULL. The
negative flag is set when a value written to a register has the most
significant bit set. Writing to this register will not cause Z or N bit to
change/written with unexpected values. Bitwise operations on the status
register itself will not yield unexpected results on the Z/N bits, allowing
successful setting/clearing of flags manually. The break flag is set if the
interrupt was triggered from a break instruction. Aux bits are set with the

rising edge on the AUX Inputs (X0-X3) pins.




Instructions

The SM1 only has 16 instructions, but due to the instruction encoding,

every one of these instructions can be powerful.

0x0 - BRK

BReaK enters an interrupt routine. When this instruction is executed,
the CPU pushes the current PC to the stack and sets the PC to the address
set with the INT instruction. The B flag is set in the status.

No operands.

0xl1l - JMP

JuMP if the condition specified in operand 2/3 is true.
Operand 1: Address to jump to
Operand 2: Extension to operand 2; Bitwise AND with the X0-X3 bits in the
status register.
Operand 3: Bitwise AND with the first three bits of the status register. If
the result is non-zero, PC is set to operand 1. MSB of operand 3 will invert

the condition. Operand 2 extends operand 3 to the X bits.

0x2 - MOV

MOVe copies contents from one register to another.
Operand 1: Destination register
Operand 2: Source register

Modifies: ZN




0x3 - LOD
LoaD from memory at the specified address.
Operand 1: Destination register
Operand 2: Address
Operand 3: If not null, this will specify an index register. (Effective
address = OP2+0P3)

Modifies: ZN

0x4 - STO
STOre to memory at the specified address.
Operand 1: Source register
Operand 2: Address
Operand 3: If not null, this will specify an index register. (Effective

address = OP2+0P3)

0x5 - ALU

Perform an ALU operation on two registers and store the result back to
the first operand. If the ALU function is bit shifting, operand 2 is
ignored, but the fetch phase does not account for this, so if set to 0 the
immediate data is still loaded.
Operand 1: Data
Operand 2: Data
Operand 3: ALU function
Modifies: (C)ZN (Does not modify the carry on bitwise operations and the
negate operation)

ALU functions:

0x0 - ADD (Add)

Ox1 - ADC (Add with carry)




0x2 — SUB (Subtraction)

0x3 - SBC (Subtract with carry)

Ox4 - SHL (Shift left bits in operand 1 by one bit, MSB is shifted
into the carry flag)

0X5 - ROL (Same as SHL, except the carry flag is shifted in to the
LSB)

Ox6 — SHR (Shift right bits in operand 1 by one bit, LSB is shifted

into the carry flag)

0X7 - ROR (Same as SHR, except the carry flag is shifted in to the
MSB)

0x8 — AND (Bitwise AND)

0x9 — OR (Bitwise OR)

OxA - XOR (Bitwise Exclusive OR)

0xF - NEG (Negate / Generate 2’s compliment)
0x6 — CMP

CoMPare two values. Same as ALU, except the result is not stored back
into operand 1
Operand 1: Data
Operand 2: Data
Operand 3: ALU function
Modifies: (C)ZN (Does not modify the carry on bitwise operations and the

negate operation)

0x7 - RPC
Read Program Counter. Read the current program counter and store it
into operand 1.

Operand 1: Destination register




0x8 — NOP

No Operation. Waste a clock cycle.

0x9 - INT
INTerrupt set. This instruction sets the interrupt vector.

Operand 1: Interrupt vector

OxA — RESERVED FOR FURTHER USE

O0xB - PUSH
PUSH data onto the stack.

Operand 1: Data

0xC - POP
POP data off the stack and write it to a register.
Operand 1: Destination register

Modifies: ZN

0xD - JSR
Jump to SubRoutine. Push the current PC to the stack and set the PC to
operand 1.

Operand 1: Address

OxE - RTS
ReTurn from Subroutine. Pop the return address from the stack and

write it to the PC.




OxF - RTI
ReTurn from Interrupt. Pop the return address from the stack and write

it to the PC, and exit from the interrupt state.




ASSEMBLY REFERENGE

Introduction

The written assembly is a way to represent the machine code in a human
readable format. For the SM1, the written assembly mnemonics does not always
correspond directly to the machine’s instruction names, this is to make
reading the assembly much easier due to how the machine instructions are
encoded. Assembly lines start with the instruction to perform, along with
zero, one, or two parameters to go along with the instruction. A parameter
can be a register name, or a constant integer in decimal, hexadecimal,
binary, or octal. The parameter format must follow the supported class for

the instruction.

Assembly Instruction Reference

INSTRUCTION CLASS DESCRIPTION

Jmp AB Jump to another piece of
code at the address in
rl

bcs AB Branch if carry set

bcc AB Branch if carry clear

beqg AB Branch if zero

bne AB Branch if not =zero

bmi AB Branch if minus

bpl AB Branch if not minus

bxa AB Branch if bit X0 set

bna AB Branch if bit X0 clear

bxb AB Branch if bit X1 set

bnb AB Branch if bit X1 clear

bxc AB Branch if bit X2 set

bnc AB Branch if bit X2 clear

bxd AB Branch if bit X3 set

bnd AB Branch if bit X3 clear

mov CDFGHIJKLMNO Copy the contents from
the second operand to
the first

add CDE Add opl and op2, store
to opl

adc CDE Add with carry




sub

CDE

Subtract opl with op2,
store to opl

sbc

CDE

Sub with carry

shl

Shift opl left by one,
bit shifted out is
stored in the carry flag

rol

Rotate left, same as shl
but the bit shifted in
is from the carry flag

shr

Shift opl right by one,
bit shifted out is
stored in the carry flag

ror

Rotate right, same as
shr but the bit shifted
in is from the carry
flag

and

CDE

Bitwise AND opl with
op2, stored to opl

or

CDE

Bitwise OR opl with op2,
stored to opl

X0or

CDE

Bitwise XOR opl with
op2, stored to opl

neg

Generate the two'’s
compliment of opl,
stored to opl

adds

CDE

Non storing version of
add

adcs

CDE

Non storing version of
adc

cmp / subs

CDE

Compare two values.
Equivalent to a non-
storing subtract.
Suggested to use cmp
when comparing values.

sbcs

CDE

Non storing version of
sbc

shls

Non storing version of
shl

rols

Non storing version of
rol

shrs

Non storing version of
shr

rors

Non storing version of
ror

bit / ands

CDE

Non storing version of
and.

ors

CDE

Non storing version of
or

XOors

CDE

Non storing version of
XOr

negs

Non storing version of




neg

nop 0 No operation, waste a
cycle

int AB Set the interrupt vector

push AB Push a wvalue to the
stack

pop A Pop a value from the
stack

jsr AB Jump to a subroutine

rts 0 Return from a subroutine

brk 0 Trigger an interrupt

rti 0 Return from an interrupt

clc 0 Clear carry

sec 0 Set carry

clz 0 Clear zero

sez 0 Set zero

cln 0 Clear negative

sen 0 Set negative

cli 0 Clear interrupt disable

sei 0 Set interrupt disable

clxa 0 Set aux bit XO

sexa 0 Clear aux bit XO

clxb 0 Set aux bit X1

sexb 0 Clear aux bit X1

clxc 0 Set aux bit X2

sexc 0 Clear aux bit X2

clxd 0 Set aux bit X3

sexd 0 Clear aux bit X3




Classes

An operand class are the supported assembly formats which that
instruction support, operands enclosed by “[“ and “]” reference a memory
location pointed to by the effective address inside those brackets. Ul6 is
an unsigned 16 bit integer. I16 is a signed or unsigned 16 bit integer. REG
references a register (r0-rl2).

OPER

OPER REG

OPER Il6

OPER REG, REG

OPER REG, I16

OPER Il16, REG

OPER REG, [Ul6]
OPER REG, [REG]
OPER REG, [REG+U16]
OPER REG, [REG+REG]
OPER [Ul6], REG
OPER [REG], REG
OPER [REG], Il16
OPER [REG+U16], REG
OPER [REGH+REG], REG
OPER [REGH+REG], I16

Oz xRgHITDOHEEUOOQWmE P O

Jumping and branching
jmp, beq, bne, bcs, bce, bmi, bpl, bxa, bna, bxb, bnb, bxc, bnc,
bxd, bnd

Jmp 0x1000 ; Jump to address 0x1000
Jmp rl ; Jump to the address contained in register rl
beq 0x1234 ; Jump to address 0x1234 if the zero flag is set
bne 0x1234 ; Jump to address 0x1234 if the zero flag is clear
Jumps are a way to move code execution to another piece of code, Jmp
is an unconditional jump and will always be taken. beq, bne, etc. are

conditional jumps and will be taken only when the condition is true, like

for example if the zero flag is set.




Data transferring

mov

mov rl, 0x1234 Copy value 0x1234 into register rl
mov rl, r2 Copy contents of r2 to rl
mov rl, [0x1234] Load into rl the contents at address 0x1234
mov rl, [r2] Load into rl1l the contents at address contained in r2
mov rl, [r2+0x1234] Load into rl the contents at address 0x1234+r2
mov rl, [r2+r3] Load into rl the contents at address r2+r3
mov [0x1234], ril ; Store the contents of rl to address 0x1234
mov [r2], rl ; Store rl to the address contained in r2
mov [r2], 0x1234 ; Store 0x1234 to the address contained in r2
mov [r2+0x1234], ril ; Store rl to the address 0x1234+r2
mov [r2+r3], ril ; Store rl to the address r2+r3
mov [r2+r3], 0x1234 ; Store 0x1234 to the address r2+r3

The mov instruction is to copy the value from the second operand to
the first operand. If the operand is enclosed by square brackets (“[“, “]1"),

the value at the memory location at the effective address within the

brackets is used.

ALU operations
add, adc, sub, sbc, shl, rol, shr, ror, and, or, xor, neg
ads, adcs, subs, sbcs, shls, rols, shrs, rors, ands, ors, xors, negs
cmp, bit

add rl, r2 ; Add rl and r2, store the result to ril

adc rl, r2 ; Add rl and r2 with carry

sub rl, r2 ; Subtract rl with r2

sbc rl, r2 ; Subtract rl with r2 with carry

shl ril ; Shift rl left by one

shr rl ; Shift rl right by one

rol rl ; Shift rl left by one, bit shifted in is the carry flag
ror rl ; Shift rl right by one, bit shifted in is the carry flag
and rl, r2 ; Bitwise AND rl1 with r2

or rl, r2 ; Bitwise OR r1l with r2

xor rl, r2 ; Bitwise XOR rl1 with r2

neg rl ; Generate the two’'s compliment of rl

cmp rl, r2 ; Compare rl with r2

The ALU operations are for arithmetic and logic, with the combination
of these functions operations like multiplication and division can be

performed. Non storing versions of the instructions have an “s” appended to




them, these variations are for testing values and bits without overwriting
any registers. When comparing two values it is suggested to use the compare
instruction for readability of the assembly code; subs exists to keep
continuity with the other operations.

The result of the cmp instruction is the states in the status
register, carry (c), zero (z) and negative (n). The combination of these
flags indicate whether the register contents are less than, equal, or

greater than. A table below summarizes the what each flag indicates.

Compare result N Z C
opl < op2 * 0 0
opl = op2 0 1 1
opl > op2 * 0 1

* The N flag will be bit 15 of opl-op2

Stack operations
push, pop

push rl ; Push rl to the stack
push 10 ; Push the value 5 to the stack
pop rl ; Pop the top value of the stack into rl

Subroutines

Jsr, rts
Jjsr 0x1234 ; Jump to the subroutine at address 0x1234
jsr rl ; Jump to the subroutine at the address contained in rl
rts ; Return from a subroutine back to the latest Jsr instruction

Subroutines are a way to have a piece of code that can be reused many
time from different locations. When a subroutines is called wvia jsr, the
program counter is pushed to the stack and code execution jumps to the
subroutine. When a subroutine returns via an rts, the top value of the stack

is stored into the program counter.




brk ;
rti ;
int 0x8000 ;
int ri ;

Interrupts
brk, rti, int

Trigger interrupt

Return from and interrupt

Set the interrupt routine vector to 0x8000

Set the interrupt routine vector to the contents of rl

Interrupts are a way to force the cpu to perform a different task at

any point during execution. An interrupt is triggered when the interrupt

disable bit is cleared in the status register and the interrupt pin is

pulled high.

When triggered, the brk instruction is force loaded into the

instruction register, the program counter is pushed to the stack and the

program counter is set to the value set by the int instruction. The brk

instruction can be used directly in code too. When returning form an

interrupt, rti must be used to clear the interrupted state of the cpu.

Setting and clearing flags

cle, sec, clz, sez, cln, sen, cli, sei, clxa, sexa, clxb, sexb, clxc,

sexc, clxd, sexd

clc ; Clear the carry flag
sec ; Set the carry flag

These instructions clears and sets flags in the status register. The

flag clearing/setting instructions get expanded to a bitwise AND or bitwise

OR with the status in the machine code.




