
 

MICROCOMPUTERS

MICROCOMPUTERS
MICROCOMPUTERS

MICROCOMPUTERS
SM1

HARDWARE & PROGRAMMING 
MANUAL



TURNER SEMICONDUCTOR

SM1 Hardware & Programming Manual

Revision 1

20 / 05 / 2025



SM1 Features

• Sixteen bit parallel processing
• 16 instructions
• 12 ALU Operations
• 13 General purpose registers
• 5 addressing modes
• True indexing capabilities
• Programmable stack pointer

• Interrupt capability
• Use with any type or speed 

memory
• 16 bit bi-directional Data Bus
• Addressable memory range of up 

to 65K words
• Bus active output

Pinout

On the SM1, there is 66 pins, these pins are for control signals 

to/from the CPU and to interface with memory.

Memory interface

Cyan: Trigger interrupted
Yellow: A0-A15 (from left to right)
Red: Memory write
Green: Memory read
Magenta: D0-D15 (data out) (from left to right)
Blue: D0-D15 (data in) (from left to right)

Control I/O

Purple (left): X3-X0 (aux in) (from left to right)
Red: Reset
White: Clock input
Purple (left): X7-X0 (aux out) (from left to right)
Blue: Set carry



Address bus (A0-A15):

16 bit address to allow up to 65K of addressable memory at one time.

Write:

When the SM1 writes data to the memory bus, this pin is pulsed HIGH 

for a duration of one tick.

Read:

While this pin is high, the SM1 is reading data from the specified 

address.

Data bus (D0-D15):

16 bit bi-directional data bus, transferring data to and from 

peripherals.

Reset:

This input is used to initialize the CPU from a halt state, while this 

pin is held high, the CPU will not execute any instructions, the data bus is 

set to LOW, the address bus is set to 0xFFFF, and the read pin is set to 

HIGH. The clock cycle after the reset pin is LOW will set the program 

counter (PC) to the value on the data bus. The reset cycle will disable 

interrupts, but the registers and stack pointer are not reset.

Clock:

Clock input to the CPU.

Set carry:

Rising edge on this pin will set the carry bit in the status register.

AUX Inputs (X0-X3):

A rising edge on these pins will set the corresponding bits in the 

status register.

AUX Outputs (X0-X7):

These bits are the direct state of bits 8-15 of the status register.



Interrupt:

While this pin is HIGH, interrupt disable bit is cleared, and the CPU 

is in the fetch phase, 0x0000 (BRK) is force loaded into the instruction 

register, and the break bit in the status register is cleared.

Addressing modes

Immediate addressing:

This addressing mode is available to all instructions, the operand is 

contained in the second word of the instruction and no further memory 

addressing is required.

Absolute addressing:

Absolute addressing is only available to LOD (Load) and STO (Store) 

instructions. In this addressing mode, data is read/written to memory.

Indexed addressing:

Index addressing is only available to LOD and STO instructions. This 

addressing mode is used in conjunction with registers to read/write to 

memory at an indexed location. The effective address is calculated by adding 

the base address to the contents in a register.

Register addressing:

This form of addressing is represented with a one word instruction, 

implying an operation with one or more registers.

Implied addressing:

In the implied addressing mode, the address containing the operand is 

implicitly stated in the operation code of the instruction.



Reset, fetch, execute, and interrupt cycles

Reset:

When the reset pin is pulled HIGH, the CPU will read from address 

0xFFFF for the start vector to begin execution. The next clock cycle after 

the reset pin is LOW the CPU will latch the start vector to the PC.

Fetch:

During the fetch cycle, the CPU outputs the current program counter to 

the address bus to read the next opcode. When the clock signal is pulled 

HIGH, the CPU latches the opcode into the instruction register, the PC is 

incremented, and the CPU starts to read the next value as immediate data. 

When the clock goes back to low, the CPU latches the immediate data, the PC 

is incremented if immediate data is used in the opcode (otherwise the 

latched data is discarded), and the CPU is put into the execute phase. If 

the instruction does not access memory, and a jump is not taken, the CPU 

returns immediately back to the fetch phase, and the instruction is executed 

during the fetch.

Execute:

During the execute phase, the instruction is executed in two steps, 

the first execution phase is executed on the rising edge of the clock, and 

the second on the falling edge of the clock.

Interrupt:

The interrupt is triggered on the next fetch cycle when: The interrupt 

disable bit is clear, the CPU is currently not in an interrupted state, and 

the interrupt pin is pulled HIGH. When an interrupt is triggered, during the 

fetch cycle, the value 0x0000 (BRK) is force loaded into the instruction 

register, but the PC is not incremented, the PC is pushed to the stack and 



the PC is set to the value set by the INT instruction. During an interrupt, 

an interrupt is not able to trigger again until the CPU leaves the interrupt 

state with a return from interrupt (RTI) instruction, exception being the 

BRK instruction able to re-trigger the interrupt. If the interrupt is 

triggered by a BRK instruction, and not from the pin, the B (break) bit is 

set in the status register.



PROGRAMMING

Instruction Set Architecture

Registers:

The SM1 has 16 internal accessible registers. There are 13 general 

purpose registers and 3 special purpose registers.

Registers 1 to 13 are labeled r0-r12, register 14 is the stack pointer 

(sp), register 15 is a status register (st), and register 0 is a special 

immediate data, read-only register. Register 0 is latched with immediate 

data on the second phase of the fetch cycle, this register is used like any 

other register to provide a flexible, but simple instruction set.

Instruction encoding:

Instruction are encoded in 16 bit opcodes, the opcode contains the 

instruction, operand 1, operand 2, and operand 3.

Instruction word format: IIIIXXXXYYYYZZZZ ← LSB

Least significant bit is on the right.

I (4 bits): Instruction
X (4 bits): Operand 1 register selector
Y (4 bits): Operand 2 register selector
Z (4 bits): Operand 3 General instruction options / register selector

Each instruction may use one, two or all three operands as inputs. 

Operand 1 and 2 are selectors to select which registers to use as inputs to 

the instruction, instructions that generates a result will be stored back to 

the register selected with operand 1, except the memory write instructions 

where operand 1 is the register used to write to memory. Operand 3 is used 

differently depending on the instruction. Operand 3 may be used as the index 

register for store and load instructions, ALU function selector, or the 

conditional jump selector.



Stack pointer:

The stack pointer register is a read and writable register that is 

automatically incremented/decremented when using the stack instructions 

(push, pop, jump to subroutine, return from subroutine, and return from 

interrupt). The SP register is a pre-decrement / post-increment model, 

meaning that when pushing to the stack, the stack pointer is decremented 

before writing to memory, and reads from memory before incrementing.

Status register:

The status is a read and write register containing the flags that hold 

the CPU’s state, the flags are: Carry (C), Zero (Z), Negative (N), Interrupt 

disable (I), Break (B), AUX0-3 (X0-X3), they correspond to bit 0, 1, 2, 3, 

4, 8, 9, 10, 11 respectively. A carry is generated when shifting a bit out 

with shift functions, or when a carry occurs from an arithmetic function. 

The zero flag is set when a value written to a register is NULL. The 

negative flag is set when a value written to a register has the most 

significant bit set. Writing to this register will not cause Z or N bit to 

change/written with unexpected values. Bitwise operations on the status 

register itself will not yield unexpected results on the Z/N bits, allowing 

successful setting/clearing of flags manually. The break flag is set if the 

interrupt was triggered from a break instruction. Aux bits are set with the 

rising edge on the AUX Inputs (X0-X3) pins.



Instructions

The SM1 only has 16 instructions, but due to the instruction encoding, 

every one of these instructions can be powerful.

0x0 – BRK

BReaK enters an interrupt routine. When this instruction is executed, 

the CPU pushes the current PC to the stack and sets the PC to the address 

set with the INT instruction. The B flag is set in the status.

No operands.

0x1 – JMP

JuMP if the condition specified in operand 2/3 is true.

Operand 1: Address to jump to

Operand 2: Extension to operand 2; Bitwise AND with the X0-X3 bits in the 

status register.

Operand 3: Bitwise AND with the first three bits of the status register. If 

the result is non-zero, PC is set to operand 1. MSB of operand 3 will invert 

the condition. Operand 2 extends operand 3 to the X bits.

0x2 – MOV

MOVe copies contents from one register to another.

Operand 1: Destination register

Operand 2: Source register

Modifies: ZN



0x3 – LOD

LoaD from memory at the specified address.

Operand 1: Destination register

Operand 2: Address

Operand 3: If not null, this will specify an index register. (Effective 

address = OP2+OP3)

Modifies: ZN

0x4 – STO

STOre to memory at the specified address.

Operand 1: Source register

Operand 2: Address

Operand 3: If not null, this will specify an index register. (Effective 

address = OP2+OP3)

0x5 – ALU

Perform an ALU operation on two registers and store the result back to 

the first operand. If the ALU function is bit shifting, operand 2 is 

ignored, but the fetch phase does not account for this, so if set to 0 the 

immediate data is still loaded.

Operand 1: Data

Operand 2: Data

Operand 3: ALU function

Modifies: (C)ZN (Does not modify the carry on bitwise operations and the 

negate operation)

ALU functions:

0x0 – ADD (Add)

0x1 – ADC (Add with carry)



0x2 – SUB (Subtraction)

0x3 – SBC (Subtract with carry)

0x4 – SHL (Shift left bits in operand 1 by one bit, MSB is shifted 

into the carry flag)

0X5 – ROL (Same as SHL, except the carry flag is shifted in to the 

LSB)

0x6 – SHR (Shift right bits in operand 1 by one bit, LSB is shifted 

into the carry flag)

0X7 – ROR (Same as SHR, except the carry flag is shifted in to the 

MSB)

0x8 – AND (Bitwise AND)

0x9 – OR (Bitwise OR)

0xA – XOR (Bitwise Exclusive OR)

0xF – NEG (Negate / Generate 2’s compliment)

0x6 – CMP

CoMPare two values. Same as ALU, except the result is not stored back 

into operand 1

Operand 1: Data

Operand 2: Data

Operand 3: ALU function

Modifies: (C)ZN (Does not modify the carry on bitwise operations and the 

negate operation)

0x7 – RPC

Read Program Counter. Read the current program counter and store it 

into operand 1.

Operand 1: Destination register



0x8 – NOP

No Operation. Waste a clock cycle.

0x9 – INT

INTerrupt set. This instruction sets the interrupt vector.

Operand 1: Interrupt vector

0xA – RESERVED FOR FURTHER USE

0xB – PUSH

PUSH data onto the stack.

Operand 1: Data

0xC – POP

POP data off the stack and write it to a register.

Operand 1: Destination register

Modifies: ZN

0xD – JSR

Jump to SubRoutine. Push the current PC to the stack and set the PC to 

operand 1.

Operand 1: Address

0xE – RTS

ReTurn from Subroutine. Pop the return address from the stack and 

write it to the PC.



0xF – RTI

ReTurn from Interrupt. Pop the return address from the stack and write 

it to the PC, and exit from the interrupt state.



ASSEMBLY REFERENCE
Introduction

The written assembly is a way to represent the machine code in a human 

readable format. For the SM1, the written assembly mnemonics does not always 

correspond directly to the machine’s instruction names, this is to make 

reading the assembly much easier due to how the machine instructions are 

encoded. Assembly lines start with the instruction to perform, along with 

zero, one, or two parameters to go along with the instruction. A parameter 

can be a register name, or a constant integer in decimal, hexadecimal, 

binary, or octal. The parameter format must follow the supported class for 

the instruction.

Assembly Instruction Reference

INSTRUCTION CLASS DESCRIPTION

jmp AB Jump to another piece of 
code at the address in 
r1

bcs AB Branch if carry set

bcc AB Branch if carry clear

beq AB Branch if zero

bne AB Branch if not zero

bmi AB Branch if minus

bpl AB Branch if not minus

bxa AB Branch if bit X0 set

bna AB Branch if bit X0 clear

bxb AB Branch if bit X1 set

bnb AB Branch if bit X1 clear

bxc AB Branch if bit X2 set

bnc AB Branch if bit X2 clear

bxd AB Branch if bit X3 set

bnd AB Branch if bit X3 clear

mov CDFGHIJKLMNO Copy the contents from 
the second operand to 
the first

add CDE Add op1 and op2, store 
to op1

adc CDE Add with carry



sub CDE Subtract op1 with op2, 
store to op1

sbc CDE Sub with carry

shl A Shift op1 left by one, 
bit shifted out is 
stored in the carry flag

rol A Rotate left, same as shl 
but the bit shifted in 
is from the carry flag

shr A Shift op1 right by one, 
bit shifted out is 
stored in the carry flag

ror A Rotate right, same as 
shr but the bit shifted 
in is from the carry 
flag

and CDE Bitwise AND op1 with 
op2, stored to op1

or CDE Bitwise OR op1 with op2, 
stored to op1

xor CDE Bitwise XOR op1 with 
op2, stored to op1

neg A Generate the two’s 
compliment of op1, 
stored to op1

adds CDE Non storing version of 
add

adcs CDE Non storing version of 
adc

cmp / subs CDE Compare two values. 
Equivalent to a non-
storing subtract. 
Suggested to use cmp 
when comparing values.

sbcs CDE Non storing version of 
sbc

shls A Non storing version of 
shl

rols A Non storing version of 
rol

shrs A Non storing version of 
shr

rors A Non storing version of 
ror

bit / ands CDE Non storing version of 
and.

ors CDE Non storing version of 
or

xors CDE Non storing version of 
xor

negs A Non storing version of 



neg

nop 0 No operation, waste a 
cycle

int AB Set the interrupt vector

push AB Push a value to the 
stack

pop A Pop a value from the 
stack

jsr AB Jump to a subroutine

rts 0 Return from a subroutine

brk 0 Trigger an interrupt

rti 0 Return from an interrupt

clc 0 Clear carry

sec 0 Set carry

clz 0 Clear zero

sez 0 Set zero

cln 0 Clear negative

sen 0 Set negative

cli 0 Clear interrupt disable

sei 0 Set interrupt disable

clxa 0 Set aux bit X0

sexa 0 Clear aux bit X0

clxb 0 Set aux bit X1

sexb 0 Clear aux bit X1

clxc 0 Set aux bit X2

sexc 0 Clear aux bit X2

clxd 0 Set aux bit X3

sexd 0 Clear aux bit X3



Classes
An operand class are the supported assembly formats which that 

instruction support, operands enclosed by “[“ and “]” reference a memory 
location pointed to by the effective address inside those brackets. U16 is 
an unsigned 16 bit integer. I16 is a signed or unsigned 16 bit integer. REG 
references a register (r0-r12).

0: OPER
A: OPER REG
B: OPER I16
C: OPER REG, REG
D: OPER REG, I16
E: OPER I16, REG
F: OPER REG, [U16]
G: OPER REG, [REG]
H: OPER REG, [REG+U16]
I: OPER REG, [REG+REG]
J: OPER [U16], REG
K: OPER [REG], REG
L: OPER [REG], I16
M: OPER [REG+U16], REG
N: OPER [REG+REG], REG
O: OPER [REG+REG], I16

Jumping and branching
jmp, beq, bne, bcs, bcc, bmi, bpl, bxa, bna, bxb, bnb, bxc, bnc, 

bxd, bnd

jmp 0x1000 ; Jump to address 0x1000
jmp r1 ; Jump to the address contained in register r1
beq 0x1234 ; Jump to address 0x1234 if the zero flag is set
bne 0x1234 ; Jump to address 0x1234 if the zero flag is clear
…

Jumps are a way to move code execution to another piece of code, jmp 

is an unconditional jump and will always be taken. beq, bne, etc. are 

conditional jumps and will be taken only when the condition is true, like 

for example if the zero flag is set.



Data transferring
mov

mov r1, 0x1234 ; Copy value 0x1234 into register r1
mov r1, r2 ; Copy contents of r2 to r1
mov r1, [0x1234] ; Load into r1 the contents at address 0x1234
mov r1, [r2] ; Load into r1 the contents at address contained in r2
mov r1, [r2+0x1234] ; Load into r1 the contents at address 0x1234+r2
mov r1, [r2+r3] ; Load into r1 the contents at address r2+r3
mov [0x1234], r1 ; Store the contents of r1 to address 0x1234
mov [r2], r1 ; Store r1 to the address contained in r2
mov [r2], 0x1234 ; Store 0x1234 to the address contained in r2
mov [r2+0x1234], r1 ; Store r1 to the address 0x1234+r2
mov [r2+r3], r1 ; Store r1 to the address r2+r3
mov [r2+r3], 0x1234 ; Store 0x1234 to the address r2+r3

The mov instruction is to copy the value from the second operand to 

the first operand. If the operand is enclosed by square brackets (“[“, “]”), 

the value at the memory location at the effective address within the 

brackets is used.

ALU operations
add, adc, sub, sbc, shl, rol, shr, ror, and, or, xor, neg

ads, adcs, subs, sbcs, shls, rols, shrs, rors, ands, ors, xors, negs
cmp, bit

add r1, r2 ; Add r1 and r2, store the result to r1
adc r1, r2 ; Add r1 and r2 with carry
sub r1, r2 ; Subtract r1 with r2
sbc r1, r2 ; Subtract r1 with r2 with carry
shl r1 ; Shift r1 left by one
shr r1 ; Shift r1 right by one
rol r1 ; Shift r1 left by one, bit shifted in is the carry flag
ror r1 ; Shift r1 right by one, bit shifted in is the carry flag
and r1, r2 ; Bitwise AND r1 with r2
or r1, r2 ; Bitwise OR r1 with r2
xor r1, r2 ; Bitwise XOR r1 with r2
neg r1 ; Generate the two’s compliment of r1
cmp r1, r2 ; Compare r1 with r2

The ALU operations are for arithmetic and logic, with the combination 

of these functions operations like multiplication and division can be 

performed. Non storing versions of the instructions have an “s” appended to 



them, these variations are for testing values and bits without overwriting 

any registers. When comparing two values it is suggested to use the compare 

instruction for readability of the assembly code; subs exists to keep 

continuity with the other operations.

The result of the cmp instruction is the states in the status 

register, carry (c), zero (z) and negative (n). The combination of these 

flags indicate whether the register contents are less than, equal, or 

greater than. A table below summarizes the what each flag indicates.

Compare result N Z C

op1 < op2 * 0 0

op1 = op2 0 1 1

op1 > op2 * 0 1

* The N flag will be bit 15 of op1-op2

Stack operations
push, pop

push r1 ; Push r1 to the stack 
push 10 ; Push the value 5 to the stack
pop r1 ; Pop the top value of the stack into r1

Subroutines
jsr, rts

jsr 0x1234 ; Jump to the subroutine at address 0x1234
jsr r1 ; Jump to the subroutine at the address contained in r1
rts ; Return from a subroutine back to the latest jsr instruction

Subroutines are a way to have a piece of code that can be reused many 

time from different locations. When a subroutines is called via jsr, the 

program counter is pushed to the stack and code execution jumps to the 

subroutine. When a subroutine returns via an rts, the top value of the stack 

is stored into the program counter.



Interrupts
brk, rti, int

brk ; Trigger interrupt
rti ; Return from and interrupt
int 0x8000 ; Set the interrupt routine vector to 0x8000
int r1 ; Set the interrupt routine vector to the contents of r1

Interrupts are a way to force the cpu to perform a different task at 

any point during execution. An interrupt is triggered when the interrupt 

disable bit is cleared in the status register and the interrupt pin is 

pulled high. When triggered, the brk instruction is force loaded into the 

instruction register, the program counter is pushed to the stack and the 

program counter is set to the value set by the int instruction. The brk 

instruction can be used directly in code too. When returning form an 

interrupt, rti must be used to clear the interrupted state of the cpu.

Setting and clearing flags
clc, sec, clz, sez, cln, sen, cli, sei, clxa, sexa, clxb, sexb, clxc, 

sexc, clxd, sexd

clc ; Clear the carry flag
sec ; Set the carry flag
…

These instructions clears and sets flags in the status register. The 

flag clearing/setting instructions get expanded to a bitwise AND or bitwise 

OR with the status in the machine code.


